File Coverage

erfasrc/src/apco.c
Criterion Covered Total %
statement 0 18 0.0
branch n/a
condition n/a
subroutine n/a
pod n/a
total 0 18 0.0


line stmt bran cond sub pod time code
1             #include "erfa.h"
2              
3 0           void eraApco(double date1, double date2,
4             double ebpv[2][3], double ehp[3],
5             double x, double y, double s, double theta,
6             double elong, double phi, double hm,
7             double xp, double yp, double sp,
8             double refa, double refb,
9             eraASTROM *astrom)
10             /*
11             ** - - - - - - - -
12             ** e r a A p c o
13             ** - - - - - - - -
14             **
15             ** For a terrestrial observer, prepare star-independent astrometry
16             ** parameters for transformations between ICRS and observed
17             ** coordinates. The caller supplies the Earth ephemeris, the Earth
18             ** rotation information and the refraction constants as well as the
19             ** site coordinates.
20             **
21             ** Given:
22             ** date1 double TDB as a 2-part...
23             ** date2 double ...Julian Date (Note 1)
24             ** ebpv double[2][3] Earth barycentric PV (au, au/day, Note 2)
25             ** ehp double[3] Earth heliocentric P (au, Note 2)
26             ** x,y double CIP X,Y (components of unit vector)
27             ** s double the CIO locator s (radians)
28             ** theta double Earth rotation angle (radians)
29             ** elong double longitude (radians, east +ve, Note 3)
30             ** phi double latitude (geodetic, radians, Note 3)
31             ** hm double height above ellipsoid (m, geodetic, Note 3)
32             ** xp,yp double polar motion coordinates (radians, Note 4)
33             ** sp double the TIO locator s' (radians, Note 4)
34             ** refa double refraction constant A (radians, Note 5)
35             ** refb double refraction constant B (radians, Note 5)
36             **
37             ** Returned:
38             ** astrom eraASTROM* star-independent astrometry parameters:
39             ** pmt double PM time interval (SSB, Julian years)
40             ** eb double[3] SSB to observer (vector, au)
41             ** eh double[3] Sun to observer (unit vector)
42             ** em double distance from Sun to observer (au)
43             ** v double[3] barycentric observer velocity (vector, c)
44             ** bm1 double sqrt(1-|v|^2): reciprocal of Lorenz factor
45             ** bpn double[3][3] bias-precession-nutation matrix
46             ** along double longitude + s' (radians)
47             ** xpl double polar motion xp wrt local meridian (radians)
48             ** ypl double polar motion yp wrt local meridian (radians)
49             ** sphi double sine of geodetic latitude
50             ** cphi double cosine of geodetic latitude
51             ** diurab double magnitude of diurnal aberration vector
52             ** eral double "local" Earth rotation angle (radians)
53             ** refa double refraction constant A (radians)
54             ** refb double refraction constant B (radians)
55             **
56             ** Notes:
57             **
58             ** 1) The TDB date date1+date2 is a Julian Date, apportioned in any
59             ** convenient way between the two arguments. For example,
60             ** JD(TDB)=2450123.7 could be expressed in any of these ways, among
61             ** others:
62             **
63             ** date1 date2
64             **
65             ** 2450123.7 0.0 (JD method)
66             ** 2451545.0 -1421.3 (J2000 method)
67             ** 2400000.5 50123.2 (MJD method)
68             ** 2450123.5 0.2 (date & time method)
69             **
70             ** The JD method is the most natural and convenient to use in cases
71             ** where the loss of several decimal digits of resolution is
72             ** acceptable. The J2000 method is best matched to the way the
73             ** argument is handled internally and will deliver the optimum
74             ** resolution. The MJD method and the date & time methods are both
75             ** good compromises between resolution and convenience. For most
76             ** applications of this function the choice will not be at all
77             ** critical.
78             **
79             ** TT can be used instead of TDB without any significant impact on
80             ** accuracy.
81             **
82             ** 2) The vectors eb, eh, and all the astrom vectors, are with respect
83             ** to BCRS axes.
84             **
85             ** 3) The geographical coordinates are with respect to the ERFA_WGS84
86             ** reference ellipsoid. TAKE CARE WITH THE LONGITUDE SIGN
87             ** CONVENTION: the longitude required by the present function is
88             ** right-handed, i.e. east-positive, in accordance with geographical
89             ** convention.
90             **
91             ** 4) xp and yp are the coordinates (in radians) of the Celestial
92             ** Intermediate Pole with respect to the International Terrestrial
93             ** Reference System (see IERS Conventions), measured along the
94             ** meridians 0 and 90 deg west respectively. sp is the TIO locator
95             ** s', in radians, which positions the Terrestrial Intermediate
96             ** Origin on the equator. For many applications, xp, yp and
97             ** (especially) sp can be set to zero.
98             **
99             ** Internally, the polar motion is stored in a form rotated onto the
100             ** local meridian.
101             **
102             ** 5) The refraction constants refa and refb are for use in a
103             ** dZ = A*tan(Z)+B*tan^3(Z) model, where Z is the observed
104             ** (i.e. refracted) zenith distance and dZ is the amount of
105             ** refraction.
106             **
107             ** 6) It is advisable to take great care with units, as even unlikely
108             ** values of the input parameters are accepted and processed in
109             ** accordance with the models used.
110             **
111             ** 7) In cases where the caller does not wish to provide the Earth
112             ** Ephemeris, the Earth rotation information and refraction
113             ** constants, the function eraApco13 can be used instead of the
114             ** present function. This starts from UTC and weather readings etc.
115             ** and computes suitable values using other ERFA functions.
116             **
117             ** 8) This is one of several functions that inserts into the astrom
118             ** structure star-independent parameters needed for the chain of
119             ** astrometric transformations ICRS <-> GCRS <-> CIRS <-> observed.
120             **
121             ** The various functions support different classes of observer and
122             ** portions of the transformation chain:
123             **
124             ** functions observer transformation
125             **
126             ** eraApcg eraApcg13 geocentric ICRS <-> GCRS
127             ** eraApci eraApci13 terrestrial ICRS <-> CIRS
128             ** eraApco eraApco13 terrestrial ICRS <-> observed
129             ** eraApcs eraApcs13 space ICRS <-> GCRS
130             ** eraAper eraAper13 terrestrial update Earth rotation
131             ** eraApio eraApio13 terrestrial CIRS <-> observed
132             **
133             ** Those with names ending in "13" use contemporary ERFA models to
134             ** compute the various ephemerides. The others accept ephemerides
135             ** supplied by the caller.
136             **
137             ** The transformation from ICRS to GCRS covers space motion,
138             ** parallax, light deflection, and aberration. From GCRS to CIRS
139             ** comprises frame bias and precession-nutation. From CIRS to
140             ** observed takes account of Earth rotation, polar motion, diurnal
141             ** aberration and parallax (unless subsumed into the ICRS <-> GCRS
142             ** transformation), and atmospheric refraction.
143             **
144             ** 9) The context structure astrom produced by this function is used by
145             ** eraAtioq, eraAtoiq, eraAtciq* and eraAticq*.
146             **
147             ** Called:
148             ** eraAper astrometry parameters: update ERA
149             ** eraC2ixys celestial-to-intermediate matrix, given X,Y and s
150             ** eraPvtob position/velocity of terrestrial station
151             ** eraTrxpv product of transpose of r-matrix and pv-vector
152             ** eraApcs astrometry parameters, ICRS-GCRS, space observer
153             ** eraCr copy r-matrix
154             **
155             ** Copyright (C) 2013-2019, NumFOCUS Foundation.
156             ** Derived, with permission, from the SOFA library. See notes at end of file.
157             */
158             {
159             double sl, cl, r[3][3], pvc[2][3], pv[2][3];
160              
161              
162             /* Longitude with adjustment for TIO locator s'. */
163 0           astrom->along = elong + sp;
164              
165             /* Polar motion, rotated onto the local meridian. */
166 0           sl = sin(astrom->along);
167 0           cl = cos(astrom->along);
168 0           astrom->xpl = xp*cl - yp*sl;
169 0           astrom->ypl = xp*sl + yp*cl;
170              
171             /* Functions of latitude. */
172 0           astrom->sphi = sin(phi);
173 0           astrom->cphi = cos(phi);
174              
175             /* Refraction constants. */
176 0           astrom->refa = refa;
177 0           astrom->refb = refb;
178              
179             /* Local Earth rotation angle. */
180 0           eraAper(theta, astrom);
181              
182             /* Disable the (redundant) diurnal aberration step. */
183 0           astrom->diurab = 0.0;
184              
185             /* CIO based BPN matrix. */
186 0           eraC2ixys(x, y, s, r);
187              
188             /* Observer's geocentric position and velocity (m, m/s, CIRS). */
189 0           eraPvtob(elong, phi, hm, xp, yp, sp, theta, pvc);
190              
191             /* Rotate into GCRS. */
192 0           eraTrxpv(r, pvc, pv);
193              
194             /* ICRS <-> GCRS parameters. */
195 0           eraApcs(date1, date2, pv, ebpv, ehp, astrom);
196              
197             /* Store the CIO based BPN matrix. */
198 0           eraCr(r, astrom->bpn );
199              
200             /* Finished. */
201              
202 0           }
203             /*----------------------------------------------------------------------
204             **
205             **
206             ** Copyright (C) 2013-2019, NumFOCUS Foundation.
207             ** All rights reserved.
208             **
209             ** This library is derived, with permission, from the International
210             ** Astronomical Union's "Standards of Fundamental Astronomy" library,
211             ** available from http://www.iausofa.org.
212             **
213             ** The ERFA version is intended to retain identical functionality to
214             ** the SOFA library, but made distinct through different function and
215             ** file names, as set out in the SOFA license conditions. The SOFA
216             ** original has a role as a reference standard for the IAU and IERS,
217             ** and consequently redistribution is permitted only in its unaltered
218             ** state. The ERFA version is not subject to this restriction and
219             ** therefore can be included in distributions which do not support the
220             ** concept of "read only" software.
221             **
222             ** Although the intent is to replicate the SOFA API (other than
223             ** replacement of prefix names) and results (with the exception of
224             ** bugs; any that are discovered will be fixed), SOFA is not
225             ** responsible for any errors found in this version of the library.
226             **
227             ** If you wish to acknowledge the SOFA heritage, please acknowledge
228             ** that you are using a library derived from SOFA, rather than SOFA
229             ** itself.
230             **
231             **
232             ** TERMS AND CONDITIONS
233             **
234             ** Redistribution and use in source and binary forms, with or without
235             ** modification, are permitted provided that the following conditions
236             ** are met:
237             **
238             ** 1 Redistributions of source code must retain the above copyright
239             ** notice, this list of conditions and the following disclaimer.
240             **
241             ** 2 Redistributions in binary form must reproduce the above copyright
242             ** notice, this list of conditions and the following disclaimer in
243             ** the documentation and/or other materials provided with the
244             ** distribution.
245             **
246             ** 3 Neither the name of the Standards Of Fundamental Astronomy Board,
247             ** the International Astronomical Union nor the names of its
248             ** contributors may be used to endorse or promote products derived
249             ** from this software without specific prior written permission.
250             **
251             ** THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
252             ** "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
253             ** LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
254             ** FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
255             ** COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
256             ** INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
257             ** BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
258             ** LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
259             ** CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
260             ** LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
261             ** ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
262             ** POSSIBILITY OF SUCH DAMAGE.
263             **
264             */