line |
stmt |
bran |
cond |
sub |
pod |
time |
code |
1
|
|
|
|
|
|
|
package Astro::Montenbruck::RiseSet::Plarise; |
2
|
|
|
|
|
|
|
|
3
|
3
|
|
|
3
|
|
17
|
use strict; |
|
3
|
|
|
|
|
6
|
|
|
3
|
|
|
|
|
79
|
|
4
|
3
|
|
|
3
|
|
12
|
use warnings; |
|
3
|
|
|
|
|
5
|
|
|
3
|
|
|
|
|
74
|
|
5
|
3
|
|
|
3
|
|
13
|
no warnings qw/experimental/; |
|
3
|
|
|
|
|
6
|
|
|
3
|
|
|
|
|
93
|
|
6
|
3
|
|
|
3
|
|
12
|
use feature qw/switch/; |
|
3
|
|
|
|
|
6
|
|
|
3
|
|
|
|
|
229
|
|
7
|
|
|
|
|
|
|
|
8
|
3
|
|
|
3
|
|
18
|
use Exporter qw/import/; |
|
3
|
|
|
|
|
5
|
|
|
3
|
|
|
|
|
77
|
|
9
|
3
|
|
|
3
|
|
13
|
use Readonly; |
|
3
|
|
|
|
|
5
|
|
|
3
|
|
|
|
|
221
|
|
10
|
|
|
|
|
|
|
|
11
|
3
|
|
|
3
|
|
15
|
use Math::Trig qw/:pi deg2rad rad2deg acos/; |
|
3
|
|
|
|
|
5
|
|
|
3
|
|
|
|
|
359
|
|
12
|
|
|
|
|
|
|
|
13
|
3
|
|
|
3
|
|
20
|
use Astro::Montenbruck::MathUtils qw/to_range/; |
|
3
|
|
|
|
|
6
|
|
|
3
|
|
|
|
|
145
|
|
14
|
3
|
|
|
3
|
|
17
|
use Astro::Montenbruck::Time qw/cal2jd jd_cent/; |
|
3
|
|
|
|
|
5
|
|
|
3
|
|
|
|
|
138
|
|
15
|
3
|
|
|
3
|
|
1143
|
use Astro::Montenbruck::Time::Sidereal qw/ramc/; |
|
3
|
|
|
|
|
6
|
|
|
3
|
|
|
|
|
139
|
|
16
|
3
|
|
|
3
|
|
18
|
use Astro::Montenbruck::RiseSet::Constants qw/:events :states/; |
|
3
|
|
|
|
|
6
|
|
|
3
|
|
|
|
|
2205
|
|
17
|
|
|
|
|
|
|
|
18
|
|
|
|
|
|
|
our @EXPORT_OK = qw/rst_func/; |
19
|
|
|
|
|
|
|
our $VERSION = 0.01; |
20
|
|
|
|
|
|
|
|
21
|
|
|
|
|
|
|
Readonly our $SID => 0.9972696; # Conversion sidereal/solar time |
22
|
|
|
|
|
|
|
Readonly our $ZT_MIN => 0.008; |
23
|
|
|
|
|
|
|
Readonly our $MAX_COUNT => 10; |
24
|
|
|
|
|
|
|
|
25
|
|
|
|
|
|
|
sub _cs_phi { |
26
|
2
|
|
|
2
|
|
3
|
my $phi = shift; |
27
|
2
|
|
|
|
|
8
|
my $rphi = deg2rad($phi); |
28
|
2
|
|
|
|
|
67
|
cos($rphi), sin($rphi); |
29
|
|
|
|
|
|
|
} |
30
|
|
|
|
|
|
|
|
31
|
|
|
|
|
|
|
|
32
|
|
|
|
|
|
|
|
33
|
|
|
|
|
|
|
sub rst_func { |
34
|
2
|
|
|
2
|
0
|
43
|
my %arg = ( date => undef, phi => undef, lambda => undef, @_ ); |
35
|
2
|
|
|
|
|
4
|
my $jd0 = cal2jd( @{ $arg{date} } ); |
|
2
|
|
|
|
|
8
|
|
36
|
2
|
|
|
|
|
6
|
my $phi = $arg{phi}; |
37
|
2
|
|
|
|
|
6
|
my ( $cphi, $sphi ) = _cs_phi( $phi ); |
38
|
|
|
|
|
|
|
|
39
|
2
|
|
|
|
|
14
|
my $lst_0h = ramc( $jd0, $arg{lambda} ) / 15; |
40
|
|
|
|
|
|
|
|
41
|
|
|
|
|
|
|
|
42
|
|
|
|
|
|
|
sub { |
43
|
10
|
|
|
10
|
|
101
|
my %arg = ( |
44
|
|
|
|
|
|
|
sin_h0 => undef, # sine of altitude correction |
45
|
|
|
|
|
|
|
get_position => undef, # function for calculation equatorial coordinates of the body |
46
|
|
|
|
|
|
|
@_ |
47
|
|
|
|
|
|
|
); |
48
|
|
|
|
|
|
|
|
49
|
|
|
|
|
|
|
# Compute geocentric planetary position at 0h and 24h local time |
50
|
10
|
|
|
|
|
19
|
my @ra; |
51
|
|
|
|
|
|
|
my @de; |
52
|
10
|
|
|
|
|
36
|
($ra[$_], $de[$_]) = $arg{get_position}->($jd0 + $_) for (0..1); |
53
|
|
|
|
|
|
|
|
54
|
|
|
|
|
|
|
# Generate continuous right ascension values in case of jumps |
55
|
|
|
|
|
|
|
# between 0h and 24h |
56
|
10
|
50
|
|
|
|
196
|
$ra[1] += pi2 if $ra[0] - $ra[1] > pi; |
57
|
10
|
50
|
|
|
|
25
|
$ra[0] += pi2 if $ra[0] - $ra[1] < -pi; |
58
|
|
|
|
|
|
|
|
59
|
|
|
|
|
|
|
sub { |
60
|
30
|
|
|
|
|
1138
|
my $event = shift; |
61
|
|
|
|
|
|
|
|
62
|
30
|
|
|
|
|
146
|
my $zt; |
63
|
30
|
|
|
|
|
41
|
my $zt0 = 12.0; # Starting value 12h local time |
64
|
30
|
|
|
|
|
46
|
my $state = $event; |
65
|
30
|
|
|
|
|
74
|
for (my $i = 0; $i <= $MAX_COUNT; $i++) { |
66
|
|
|
|
|
|
|
# Linear interpolation of planetary position |
67
|
69
|
|
|
|
|
473
|
my $ra = $ra[0] + ($zt0 / 24) * ($ra[1] - $ra[0]); |
68
|
69
|
|
|
|
|
110
|
my $de = $de[0] + ($zt0 / 24) * ($de[1] - $de[0]); |
69
|
69
|
|
|
|
|
128
|
my $above = rad2deg($de) > 90 - $phi; |
70
|
|
|
|
|
|
|
|
71
|
|
|
|
|
|
|
# Compute semi-diurnal arc (in radans) |
72
|
69
|
|
|
|
|
501
|
my $sda = ($arg{sin_h0} - sin($de) * $sphi) / (cos($de) * $cphi); |
73
|
69
|
50
|
|
|
|
126
|
if (abs($sda) < 1) { |
|
|
0
|
|
|
|
|
|
74
|
69
|
|
|
|
|
145
|
$sda = acos($sda); |
75
|
|
|
|
|
|
|
} elsif ($phi > 0) { |
76
|
|
|
|
|
|
|
# Test for circumpolar motion or invisibility |
77
|
0
|
0
|
|
|
|
0
|
$state = $above ? $STATE_CIRCUMPOLAR : $STATE_NEVER_RISES; |
78
|
0
|
|
|
|
|
0
|
last; |
79
|
|
|
|
|
|
|
} |
80
|
69
|
|
|
|
|
436
|
my $lst = $lst_0h + $zt0 / $SID; # Sidereal time at univ. time ZT0 |
81
|
69
|
|
|
|
|
289
|
my $h = $lst - rad2deg($ra) / 15; |
82
|
69
|
|
|
|
|
400
|
my $dtau = do { |
83
|
69
|
|
|
|
|
87
|
given ($event) { |
84
|
69
|
|
|
|
|
132
|
$h + rad2deg($sda) / 15 when $EVT_RISE; |
85
|
46
|
|
|
|
|
214
|
$h when $EVT_TRANSIT; |
86
|
24
|
|
|
|
|
105
|
$h - rad2deg($sda) / 15 when $EVT_SET; |
87
|
|
|
|
|
|
|
} |
88
|
|
|
|
|
|
|
}; |
89
|
69
|
|
|
|
|
582
|
my $dzt = $SID * (to_range($dtau + 12, 24) - 12); |
90
|
69
|
|
|
|
|
262
|
$zt0 -= $dzt; |
91
|
69
|
|
|
|
|
83
|
$zt = $zt0; |
92
|
69
|
100
|
|
|
|
128
|
last if abs($dzt) <= $ZT_MIN; |
93
|
|
|
|
|
|
|
} |
94
|
|
|
|
|
|
|
|
95
|
30
|
50
|
|
|
|
200
|
return $state eq $event ? ($state, $jd0 + $zt / 24) |
96
|
|
|
|
|
|
|
: ($state, undef) |
97
|
|
|
|
|
|
|
|
98
|
|
|
|
|
|
|
} |
99
|
|
|
|
|
|
|
|
100
|
10
|
|
|
|
|
69
|
} |
101
|
2
|
|
|
|
|
16
|
} |
102
|
|
|
|
|
|
|
|
103
|
|
|
|
|
|
|
1; |
104
|
|
|
|
|
|
|
__END__ |
105
|
|
|
|
|
|
|
|
106
|
|
|
|
|
|
|
=pod |
107
|
|
|
|
|
|
|
|
108
|
|
|
|
|
|
|
=encoding UTF-8 |
109
|
|
|
|
|
|
|
|
110
|
|
|
|
|
|
|
=head1 NAME |
111
|
|
|
|
|
|
|
|
112
|
|
|
|
|
|
|
Astro::Montenbruck::RiseSet::Plarise — rise and set. |
113
|
|
|
|
|
|
|
|
114
|
|
|
|
|
|
|
=head1 SYNOPSIS |
115
|
|
|
|
|
|
|
|
116
|
|
|
|
|
|
|
use Astro::Montenbruck::RiseSet::Constants qw/:events :altitudes/; |
117
|
|
|
|
|
|
|
use Astro::Montenbruck::RiseSet::Plarise qw/:rst_func/; |
118
|
|
|
|
|
|
|
|
119
|
|
|
|
|
|
|
# build top-level function for any event and any celestial object |
120
|
|
|
|
|
|
|
# for given time and place |
121
|
|
|
|
|
|
|
my $rst_func = rst_func( |
122
|
|
|
|
|
|
|
date => [1989, 3, 23], |
123
|
|
|
|
|
|
|
phi => 48.1, # geographic latitude |
124
|
|
|
|
|
|
|
lambda => -11.6 # geographic longitude |
125
|
|
|
|
|
|
|
); |
126
|
|
|
|
|
|
|
|
127
|
|
|
|
|
|
|
# build second level functon for calculating any event for given object |
128
|
|
|
|
|
|
|
my $evt_func = $rst_func->( |
129
|
|
|
|
|
|
|
get_position => sub { |
130
|
|
|
|
|
|
|
my $jd = shift; |
131
|
|
|
|
|
|
|
# return equatorial coordinates of the celestial body for the Julian Day. |
132
|
|
|
|
|
|
|
}, |
133
|
|
|
|
|
|
|
sin_h0 => sin( deg2rad($H0_PLANET) ), |
134
|
|
|
|
|
|
|
); |
135
|
|
|
|
|
|
|
|
136
|
|
|
|
|
|
|
# finally, calculate time of rise event. Alternatively, use $EVT_SET or $EVT_TRANSIT |
137
|
|
|
|
|
|
|
my ($state, $jd) = $evt_func->($EVT_RISE); |
138
|
|
|
|
|
|
|
|
139
|
|
|
|
|
|
|
|
140
|
|
|
|
|
|
|
=head1 VERSION |
141
|
|
|
|
|
|
|
|
142
|
|
|
|
|
|
|
Version 0.01 |
143
|
|
|
|
|
|
|
|
144
|
|
|
|
|
|
|
=head1 DESCRIPTION |
145
|
|
|
|
|
|
|
|
146
|
|
|
|
|
|
|
Low level routines for calculating rise and set times of celestial bodies. |
147
|
|
|
|
|
|
|
They are especially usefull for calculating different types of twilight. |
148
|
|
|
|
|
|
|
|
149
|
|
|
|
|
|
|
=head1 FUNCTIONS |
150
|
|
|
|
|
|
|
|
151
|
|
|
|
|
|
|
=head2 riseset ( %args ) |
152
|
|
|
|
|
|
|
|
153
|
|
|
|
|
|
|
time of rise and set events. |
154
|
|
|
|
|
|
|
|
155
|
|
|
|
|
|
|
=head3 Named Arguments |
156
|
|
|
|
|
|
|
|
157
|
|
|
|
|
|
|
=over |
158
|
|
|
|
|
|
|
|
159
|
|
|
|
|
|
|
=item * B<get_position> — function, which given I<Standard Julian Day>, |
160
|
|
|
|
|
|
|
returns equatorial coordinates of the celestial body, in radians. |
161
|
|
|
|
|
|
|
|
162
|
|
|
|
|
|
|
=item * B<date> — array of B<year> (astronomical, zero-based), B<month> [1..12] |
163
|
|
|
|
|
|
|
and B<day>, [1..31]. |
164
|
|
|
|
|
|
|
|
165
|
|
|
|
|
|
|
|
166
|
|
|
|
|
|
|
=item * B<phi> — geographic latitude, degrees, positive northward |
167
|
|
|
|
|
|
|
|
168
|
|
|
|
|
|
|
=item * B<lambda> —geographic longitude, degrees, positive westward |
169
|
|
|
|
|
|
|
|
170
|
|
|
|
|
|
|
=item * B<get_position> — function, which given I<Standard Julian Day>, |
171
|
|
|
|
|
|
|
returns equatorial coordinates of the celestial body, in radians. |
172
|
|
|
|
|
|
|
|
173
|
|
|
|
|
|
|
=item * B<sin_h0> — sine of the I<standard altitude>, i.e. the geometric altitude |
174
|
|
|
|
|
|
|
of the center of the body at the time of apparent rising or setting. |
175
|
|
|
|
|
|
|
|
176
|
|
|
|
|
|
|
|
177
|
|
|
|
|
|
|
=item * C<on_event> callback is called when the event time is determined. |
178
|
|
|
|
|
|
|
The arguments are: |
179
|
|
|
|
|
|
|
|
180
|
|
|
|
|
|
|
=over |
181
|
|
|
|
|
|
|
|
182
|
|
|
|
|
|
|
=item * event type, one of C<$EVT_RISE> or C<$EVT_SET> |
183
|
|
|
|
|
|
|
|
184
|
|
|
|
|
|
|
=item * Univerrsal time of the event |
185
|
|
|
|
|
|
|
|
186
|
|
|
|
|
|
|
=back |
187
|
|
|
|
|
|
|
|
188
|
|
|
|
|
|
|
on_event => sub { my ($evt, $ut) = @_; ... } |
189
|
|
|
|
|
|
|
|
190
|
|
|
|
|
|
|
=item * C<on_noevent> is called when the event does not happen at the given date, |
191
|
|
|
|
|
|
|
either because the body never rises, or is circumpolar. The argument is respectively |
192
|
|
|
|
|
|
|
C<$STATE_NEVER_RISES> or C<$STATE_CIRCUMPOLAR>. |
193
|
|
|
|
|
|
|
|
194
|
|
|
|
|
|
|
on_noevent => sub { my $state = shift; ... } |
195
|
|
|
|
|
|
|
|
196
|
|
|
|
|
|
|
=back |
197
|
|
|
|
|
|
|
|
198
|
|
|
|
|
|
|
=head1 AUTHOR |
199
|
|
|
|
|
|
|
|
200
|
|
|
|
|
|
|
Sergey Krushinsky, C<< <krushi at cpan.org> >> |
201
|
|
|
|
|
|
|
|
202
|
|
|
|
|
|
|
=head1 COPYRIGHT AND LICENSE |
203
|
|
|
|
|
|
|
|
204
|
|
|
|
|
|
|
Copyright (C) 2010-2022 by Sergey Krushinsky |
205
|
|
|
|
|
|
|
|
206
|
|
|
|
|
|
|
This library is free software; you can redistribute it and/or modify |
207
|
|
|
|
|
|
|
it under the same terms as Perl itself. |
208
|
|
|
|
|
|
|
|
209
|
|
|
|
|
|
|
=cut |