| line |
stmt |
bran |
cond |
sub |
pod |
time |
code |
|
1
|
|
|
|
|
|
|
package Astro::FITS::HdrTrans::UIST; |
|
2
|
|
|
|
|
|
|
|
|
3
|
|
|
|
|
|
|
=head1 NAME |
|
4
|
|
|
|
|
|
|
|
|
5
|
|
|
|
|
|
|
Astro::FITS::HdrTrans::UIST - UKIRT UIST translations |
|
6
|
|
|
|
|
|
|
|
|
7
|
|
|
|
|
|
|
=head1 SYNOPSIS |
|
8
|
|
|
|
|
|
|
|
|
9
|
|
|
|
|
|
|
use Astro::FITS::HdrTrans::UIST; |
|
10
|
|
|
|
|
|
|
|
|
11
|
|
|
|
|
|
|
%gen = Astro::FITS::HdrTrans::UIST->translate_from_FITS( %hdr ); |
|
12
|
|
|
|
|
|
|
|
|
13
|
|
|
|
|
|
|
=head1 DESCRIPTION |
|
14
|
|
|
|
|
|
|
|
|
15
|
|
|
|
|
|
|
This class provides a generic set of translations that are specific to |
|
16
|
|
|
|
|
|
|
the UIST camera and spectrometer of the United Kingdom Infrared |
|
17
|
|
|
|
|
|
|
Telescope. |
|
18
|
|
|
|
|
|
|
|
|
19
|
|
|
|
|
|
|
=cut |
|
20
|
|
|
|
|
|
|
|
|
21
|
11
|
|
|
11
|
|
3208559
|
use 5.006; |
|
|
11
|
|
|
|
|
51
|
|
|
22
|
11
|
|
|
11
|
|
62
|
use warnings; |
|
|
11
|
|
|
|
|
20
|
|
|
|
11
|
|
|
|
|
376
|
|
|
23
|
11
|
|
|
11
|
|
70
|
use strict; |
|
|
11
|
|
|
|
|
29
|
|
|
|
11
|
|
|
|
|
261
|
|
|
24
|
11
|
|
|
11
|
|
73
|
use Carp; |
|
|
11
|
|
|
|
|
22
|
|
|
|
11
|
|
|
|
|
863
|
|
|
25
|
|
|
|
|
|
|
|
|
26
|
|
|
|
|
|
|
# Inherit from UKIRTNew |
|
27
|
11
|
|
|
11
|
|
68
|
use base qw/ Astro::FITS::HdrTrans::UKIRTNew /; |
|
|
11
|
|
|
|
|
20
|
|
|
|
11
|
|
|
|
|
5648
|
|
|
28
|
|
|
|
|
|
|
|
|
29
|
11
|
|
|
11
|
|
78
|
use vars qw/ $VERSION /; |
|
|
11
|
|
|
|
|
24
|
|
|
|
11
|
|
|
|
|
7864
|
|
|
30
|
|
|
|
|
|
|
|
|
31
|
|
|
|
|
|
|
$VERSION = "1.64"; |
|
32
|
|
|
|
|
|
|
|
|
33
|
|
|
|
|
|
|
# for a constant mapping, there is no FITS header, just a generic |
|
34
|
|
|
|
|
|
|
# header that is constant |
|
35
|
|
|
|
|
|
|
my %CONST_MAP = ( |
|
36
|
|
|
|
|
|
|
NSCAN_POSITIONS => 1, |
|
37
|
|
|
|
|
|
|
SCAN_INCREMENT => 1, |
|
38
|
|
|
|
|
|
|
); |
|
39
|
|
|
|
|
|
|
|
|
40
|
|
|
|
|
|
|
# NULL mappings used to override base class implementations |
|
41
|
|
|
|
|
|
|
my @NULL_MAP = qw/ DETECTOR_INDEX /; |
|
42
|
|
|
|
|
|
|
|
|
43
|
|
|
|
|
|
|
# unit mapping implies that the value propogates directly |
|
44
|
|
|
|
|
|
|
# to the output with only a keyword name change |
|
45
|
|
|
|
|
|
|
|
|
46
|
|
|
|
|
|
|
my %UNIT_MAP = ( |
|
47
|
|
|
|
|
|
|
RA_SCALE => "CDELT2", |
|
48
|
|
|
|
|
|
|
|
|
49
|
|
|
|
|
|
|
# UIST specific |
|
50
|
|
|
|
|
|
|
GRATING_NAME => "GRISM", |
|
51
|
|
|
|
|
|
|
|
|
52
|
|
|
|
|
|
|
# Not imaging |
|
53
|
|
|
|
|
|
|
GRATING_DISPERSION => "DISPERSN", |
|
54
|
|
|
|
|
|
|
GRATING_NAME => "GRISM", |
|
55
|
|
|
|
|
|
|
GRATING_ORDER => "GRATORD", |
|
56
|
|
|
|
|
|
|
GRATING_WAVELENGTH => "CENWAVL", |
|
57
|
|
|
|
|
|
|
SLIT_ANGLE => "SLIT_PA", |
|
58
|
|
|
|
|
|
|
SLIT_WIDTH => "SLITWID", |
|
59
|
|
|
|
|
|
|
|
|
60
|
|
|
|
|
|
|
# MICHELLE compatible |
|
61
|
|
|
|
|
|
|
CHOP_ANGLE => "CHPANGLE", |
|
62
|
|
|
|
|
|
|
CHOP_THROW => "CHPTHROW", |
|
63
|
|
|
|
|
|
|
DETECTOR_READ_TYPE => "DET_MODE", |
|
64
|
|
|
|
|
|
|
NUMBER_OF_READS => "NREADS", |
|
65
|
|
|
|
|
|
|
OBSERVATION_MODE => "INSTMODE", |
|
66
|
|
|
|
|
|
|
POLARIMETRY => "POLARISE", |
|
67
|
|
|
|
|
|
|
SLIT_NAME => "SLITNAME", |
|
68
|
|
|
|
|
|
|
|
|
69
|
|
|
|
|
|
|
# CGS4 + MICHELLE + WFCAM |
|
70
|
|
|
|
|
|
|
CONFIGURATION_INDEX => 'CNFINDEX', |
|
71
|
|
|
|
|
|
|
); |
|
72
|
|
|
|
|
|
|
|
|
73
|
|
|
|
|
|
|
|
|
74
|
|
|
|
|
|
|
# Create the translation methods |
|
75
|
|
|
|
|
|
|
__PACKAGE__->_generate_lookup_methods( \%CONST_MAP, \%UNIT_MAP, \@NULL_MAP ); |
|
76
|
|
|
|
|
|
|
|
|
77
|
|
|
|
|
|
|
=head1 METHODS |
|
78
|
|
|
|
|
|
|
|
|
79
|
|
|
|
|
|
|
=over 4 |
|
80
|
|
|
|
|
|
|
|
|
81
|
|
|
|
|
|
|
=item B<this_instrument> |
|
82
|
|
|
|
|
|
|
|
|
83
|
|
|
|
|
|
|
The name of the instrument required to match (case insensitively) |
|
84
|
|
|
|
|
|
|
against the INSTRUME/INSTRUMENT keyword to allow this class to |
|
85
|
|
|
|
|
|
|
translate the specified headers. Called by the default |
|
86
|
|
|
|
|
|
|
C<can_translate> method. |
|
87
|
|
|
|
|
|
|
|
|
88
|
|
|
|
|
|
|
$inst = $class->this_instrument(); |
|
89
|
|
|
|
|
|
|
|
|
90
|
|
|
|
|
|
|
Returns "UIST". |
|
91
|
|
|
|
|
|
|
|
|
92
|
|
|
|
|
|
|
=cut |
|
93
|
|
|
|
|
|
|
|
|
94
|
|
|
|
|
|
|
sub this_instrument { |
|
95
|
22
|
|
|
22
|
1
|
71
|
return "UIST"; |
|
96
|
|
|
|
|
|
|
} |
|
97
|
|
|
|
|
|
|
|
|
98
|
|
|
|
|
|
|
=back |
|
99
|
|
|
|
|
|
|
|
|
100
|
|
|
|
|
|
|
=head1 COMPLEX CONVERSIONS |
|
101
|
|
|
|
|
|
|
|
|
102
|
|
|
|
|
|
|
=over 4 |
|
103
|
|
|
|
|
|
|
|
|
104
|
|
|
|
|
|
|
=item B<to_DEC_SCALE> |
|
105
|
|
|
|
|
|
|
|
|
106
|
|
|
|
|
|
|
Pixel scale in degrees. For imaging, the declination pixel scale is |
|
107
|
|
|
|
|
|
|
in the CDELT1 header, and for spectroscopy and IFU, it's in CDELT3. |
|
108
|
|
|
|
|
|
|
|
|
109
|
|
|
|
|
|
|
=cut |
|
110
|
|
|
|
|
|
|
|
|
111
|
|
|
|
|
|
|
sub to_DEC_SCALE { |
|
112
|
3
|
|
|
3
|
1
|
9
|
my $self = shift; |
|
113
|
3
|
|
|
|
|
8
|
my $FITS_headers = shift; |
|
114
|
3
|
|
|
|
|
6
|
my $return; |
|
115
|
3
|
100
|
|
|
|
81
|
if ( $self->to_OBSERVATION_MODE($FITS_headers) eq 'imaging' ) { |
|
116
|
1
|
|
|
|
|
5
|
$return = $FITS_headers->{CDELT1}; |
|
117
|
|
|
|
|
|
|
} else { |
|
118
|
2
|
|
|
|
|
7
|
$return = $FITS_headers->{CDELT3}; |
|
119
|
|
|
|
|
|
|
} |
|
120
|
3
|
|
|
|
|
197
|
return $return; |
|
121
|
|
|
|
|
|
|
} |
|
122
|
|
|
|
|
|
|
|
|
123
|
|
|
|
|
|
|
=item B<from_DEC_SCALE> |
|
124
|
|
|
|
|
|
|
|
|
125
|
|
|
|
|
|
|
Generate the PIXLSIZE header. |
|
126
|
|
|
|
|
|
|
|
|
127
|
|
|
|
|
|
|
=cut |
|
128
|
|
|
|
|
|
|
|
|
129
|
|
|
|
|
|
|
sub from_DEC_SCALE { |
|
130
|
3
|
|
|
3
|
1
|
8
|
my $self = shift; |
|
131
|
3
|
|
|
|
|
6
|
my $generic_headers = shift; |
|
132
|
|
|
|
|
|
|
|
|
133
|
|
|
|
|
|
|
# Can calculate the pixel size... |
|
134
|
3
|
|
|
|
|
16
|
my $scale = abs( $generic_headers->{DEC_SCALE} ); |
|
135
|
3
|
|
|
|
|
7
|
$scale *= 3600; |
|
136
|
3
|
|
|
|
|
11
|
my %result = ( PIXLSIZE => $scale ); |
|
137
|
|
|
|
|
|
|
|
|
138
|
|
|
|
|
|
|
# and either CDELT1 or CDELT3. |
|
139
|
3
|
|
|
|
|
17
|
my $ckey = 'CDELT3'; |
|
140
|
3
|
100
|
|
|
|
14
|
if ( $generic_headers->{OBSERVATION_MODE} eq 'imaging' ) { |
|
141
|
1
|
|
|
|
|
3
|
$ckey = 'CDELT1'; |
|
142
|
|
|
|
|
|
|
} |
|
143
|
3
|
|
|
|
|
9
|
$result{$ckey} = $generic_headers->{DEC_SCALE}; |
|
144
|
3
|
|
|
|
|
26
|
return %result; |
|
145
|
|
|
|
|
|
|
} |
|
146
|
|
|
|
|
|
|
|
|
147
|
|
|
|
|
|
|
=item B<to_ROTATION> |
|
148
|
|
|
|
|
|
|
|
|
149
|
|
|
|
|
|
|
ROTATION comprises the rotation matrix with respect to flipped axes, |
|
150
|
|
|
|
|
|
|
i.e. x corresponds to declination and Y to right ascension. For other |
|
151
|
|
|
|
|
|
|
UKIRT instruments this was not the case, the rotation being defined |
|
152
|
|
|
|
|
|
|
in CROTA2. Here the effective rotation is that evaluated from the |
|
153
|
|
|
|
|
|
|
PC matrix with a 90-degree counter-clockwise rotation for the rotated |
|
154
|
|
|
|
|
|
|
axes. If there is a PC3_2 header, we assume that we're in spectroscopy |
|
155
|
|
|
|
|
|
|
mode and use that instead. |
|
156
|
|
|
|
|
|
|
|
|
157
|
|
|
|
|
|
|
=cut |
|
158
|
|
|
|
|
|
|
|
|
159
|
|
|
|
|
|
|
sub to_ROTATION { |
|
160
|
3
|
|
|
3
|
1
|
8
|
my $self = shift; |
|
161
|
3
|
|
|
|
|
6
|
my $FITS_headers = shift; |
|
162
|
3
|
|
|
|
|
8
|
my $rotation; |
|
163
|
3
|
100
|
66
|
|
|
14
|
if ( exists( $FITS_headers->{PC1_1} ) && exists( $FITS_headers->{PC2_1}) ) { |
|
|
|
50
|
|
|
|
|
|
|
164
|
1
|
|
|
|
|
57
|
my $pc11; |
|
165
|
|
|
|
|
|
|
my $pc21; |
|
166
|
1
|
50
|
33
|
|
|
5
|
if ( exists ($FITS_headers->{PC3_2} ) && exists( $FITS_headers->{PC2_2} ) ) { |
|
167
|
|
|
|
|
|
|
|
|
168
|
|
|
|
|
|
|
# We're in spectroscopy mode. |
|
169
|
0
|
|
|
|
|
0
|
$pc11 = $FITS_headers->{PC3_2}; |
|
170
|
0
|
|
|
|
|
0
|
$pc21 = $FITS_headers->{PC2_2}; |
|
171
|
|
|
|
|
|
|
} else { |
|
172
|
|
|
|
|
|
|
|
|
173
|
|
|
|
|
|
|
# We're in imaging mode. |
|
174
|
1
|
|
|
|
|
19
|
$pc11 = $FITS_headers->{PC1_1}; |
|
175
|
1
|
|
|
|
|
68
|
$pc21 = $FITS_headers->{PC2_1}; |
|
176
|
|
|
|
|
|
|
} |
|
177
|
1
|
|
|
|
|
64
|
my $rad = 57.2957795131; |
|
178
|
1
|
|
|
|
|
14
|
$rotation = $rad * atan2( -$pc21 / $rad, $pc11 / $rad ) + 90.0; |
|
179
|
|
|
|
|
|
|
|
|
180
|
|
|
|
|
|
|
} elsif ( exists $FITS_headers->{CROTA2} ) { |
|
181
|
0
|
|
|
|
|
0
|
$rotation = $FITS_headers->{CROTA2} + 90.0; |
|
182
|
|
|
|
|
|
|
} else { |
|
183
|
2
|
|
|
|
|
153
|
$rotation = 90.0; |
|
184
|
|
|
|
|
|
|
} |
|
185
|
3
|
|
|
|
|
14
|
return $rotation; |
|
186
|
|
|
|
|
|
|
} |
|
187
|
|
|
|
|
|
|
|
|
188
|
|
|
|
|
|
|
|
|
189
|
|
|
|
|
|
|
=item B<to_X_REFERENCE_PIXEL> |
|
190
|
|
|
|
|
|
|
|
|
191
|
|
|
|
|
|
|
Use the nominal reference pixel if correctly supplied, failing that |
|
192
|
|
|
|
|
|
|
take the average of the bounds, and if these headers are also absent, |
|
193
|
|
|
|
|
|
|
use a default which assumes the full array. |
|
194
|
|
|
|
|
|
|
|
|
195
|
|
|
|
|
|
|
=cut |
|
196
|
|
|
|
|
|
|
|
|
197
|
|
|
|
|
|
|
sub to_X_REFERENCE_PIXEL{ |
|
198
|
3
|
|
|
3
|
1
|
8
|
my $self = shift; |
|
199
|
3
|
|
|
|
|
7
|
my $FITS_headers = shift; |
|
200
|
3
|
|
|
|
|
9
|
my $xref; |
|
201
|
3
|
50
|
0
|
|
|
12
|
if ( exists $FITS_headers->{CRPIX1} ) { |
|
|
|
0
|
|
|
|
|
|
|
202
|
3
|
|
|
|
|
87
|
$xref = $FITS_headers->{CRPIX1}; |
|
203
|
|
|
|
|
|
|
} elsif ( exists $FITS_headers->{RDOUT_X1} && |
|
204
|
|
|
|
|
|
|
exists $FITS_headers->{RDOUT_X2} ) { |
|
205
|
0
|
|
|
|
|
0
|
my $xl = $FITS_headers->{RDOUT_X1}; |
|
206
|
0
|
|
|
|
|
0
|
my $xu = $FITS_headers->{RDOUT_X2}; |
|
207
|
0
|
|
|
|
|
0
|
$xref = $self->nint( ( $xl + $xu ) / 2 ); |
|
208
|
|
|
|
|
|
|
} else { |
|
209
|
0
|
|
|
|
|
0
|
$xref = 480; |
|
210
|
|
|
|
|
|
|
} |
|
211
|
3
|
|
|
|
|
198
|
return $xref; |
|
212
|
|
|
|
|
|
|
} |
|
213
|
|
|
|
|
|
|
|
|
214
|
|
|
|
|
|
|
=item B<from_X_REFERENCE_PIXEL> |
|
215
|
|
|
|
|
|
|
|
|
216
|
|
|
|
|
|
|
Always returns the value as CRPIX1. |
|
217
|
|
|
|
|
|
|
|
|
218
|
|
|
|
|
|
|
=cut |
|
219
|
|
|
|
|
|
|
|
|
220
|
|
|
|
|
|
|
sub from_X_REFERENCE_PIXEL { |
|
221
|
3
|
|
|
3
|
1
|
7
|
my $self = shift; |
|
222
|
3
|
|
|
|
|
31
|
my $generic_headers = shift; |
|
223
|
3
|
|
|
|
|
61
|
return ( "CRPIX1", $generic_headers->{"X_REFERENCE_PIXEL"} ); |
|
224
|
|
|
|
|
|
|
} |
|
225
|
|
|
|
|
|
|
|
|
226
|
|
|
|
|
|
|
=item B<to_Y_REFERENCE_PIXEL> |
|
227
|
|
|
|
|
|
|
|
|
228
|
|
|
|
|
|
|
Use the nominal reference pixel if correctly supplied, failing that |
|
229
|
|
|
|
|
|
|
take the average of the bounds, and if these headers are also absent, |
|
230
|
|
|
|
|
|
|
use a default which assumes the full array. |
|
231
|
|
|
|
|
|
|
|
|
232
|
|
|
|
|
|
|
=cut |
|
233
|
|
|
|
|
|
|
|
|
234
|
|
|
|
|
|
|
sub to_Y_REFERENCE_PIXEL{ |
|
235
|
3
|
|
|
3
|
1
|
7
|
my $self = shift; |
|
236
|
3
|
|
|
|
|
7
|
my $FITS_headers = shift; |
|
237
|
3
|
|
|
|
|
9
|
my $yref; |
|
238
|
3
|
50
|
0
|
|
|
11
|
if ( exists $FITS_headers->{CRPIX2} ) { |
|
|
|
0
|
|
|
|
|
|
|
239
|
3
|
|
|
|
|
82
|
$yref = $FITS_headers->{CRPIX2}; |
|
240
|
|
|
|
|
|
|
} elsif ( exists $FITS_headers->{RDOUT_Y1} && |
|
241
|
|
|
|
|
|
|
exists $FITS_headers->{RDOUT_Y2} ) { |
|
242
|
0
|
|
|
|
|
0
|
my $yl = $FITS_headers->{RDOUT_Y1}; |
|
243
|
0
|
|
|
|
|
0
|
my $yu = $FITS_headers->{RDOUT_Y2}; |
|
244
|
0
|
|
|
|
|
0
|
$yref = $self->nint( ( $yl + $yu ) / 2 ); |
|
245
|
|
|
|
|
|
|
} else { |
|
246
|
0
|
|
|
|
|
0
|
$yref = 480; |
|
247
|
|
|
|
|
|
|
} |
|
248
|
3
|
|
|
|
|
194
|
return $yref; |
|
249
|
|
|
|
|
|
|
} |
|
250
|
|
|
|
|
|
|
|
|
251
|
|
|
|
|
|
|
=item B<from_Y_REFERENCE_PIXEL> |
|
252
|
|
|
|
|
|
|
|
|
253
|
|
|
|
|
|
|
Always returns the value as CRPIX2. |
|
254
|
|
|
|
|
|
|
|
|
255
|
|
|
|
|
|
|
=cut |
|
256
|
|
|
|
|
|
|
|
|
257
|
|
|
|
|
|
|
sub from_Y_REFERENCE_PIXEL { |
|
258
|
3
|
|
|
3
|
1
|
7
|
my $self = shift; |
|
259
|
3
|
|
|
|
|
5
|
my $generic_headers = shift; |
|
260
|
3
|
|
|
|
|
50
|
return ( "CRPIX2", $generic_headers->{"Y_REFERENCE_PIXEL"} ); |
|
261
|
|
|
|
|
|
|
} |
|
262
|
|
|
|
|
|
|
|
|
263
|
|
|
|
|
|
|
=back |
|
264
|
|
|
|
|
|
|
|
|
265
|
|
|
|
|
|
|
=head1 SEE ALSO |
|
266
|
|
|
|
|
|
|
|
|
267
|
|
|
|
|
|
|
C<Astro::FITS::HdrTrans>, C<Astro::FITS::HdrTrans::UKIRT>. |
|
268
|
|
|
|
|
|
|
|
|
269
|
|
|
|
|
|
|
=head1 AUTHOR |
|
270
|
|
|
|
|
|
|
|
|
271
|
|
|
|
|
|
|
Malcolm J. Currie E<lt>mjc@star.rl.ac.ukE<gt> |
|
272
|
|
|
|
|
|
|
Brad Cavanagh E<lt>b.cavanagh@jach.hawaii.eduE<gt>, |
|
273
|
|
|
|
|
|
|
Tim Jenness E<lt>t.jenness@jach.hawaii.eduE<gt>. |
|
274
|
|
|
|
|
|
|
|
|
275
|
|
|
|
|
|
|
=head1 COPYRIGHT |
|
276
|
|
|
|
|
|
|
|
|
277
|
|
|
|
|
|
|
Copyright (C) 2008 Science and Technology Facilities Council. |
|
278
|
|
|
|
|
|
|
Copyright (C) 2003-2005 Particle Physics and Astronomy Research Council. |
|
279
|
|
|
|
|
|
|
All Rights Reserved. |
|
280
|
|
|
|
|
|
|
|
|
281
|
|
|
|
|
|
|
This program is free software; you can redistribute it and/or modify it under |
|
282
|
|
|
|
|
|
|
the terms of the GNU General Public License as published by the Free Software |
|
283
|
|
|
|
|
|
|
Foundation; either Version 2 of the License, or (at your option) any later |
|
284
|
|
|
|
|
|
|
version. |
|
285
|
|
|
|
|
|
|
|
|
286
|
|
|
|
|
|
|
This program is distributed in the hope that it will be useful,but WITHOUT ANY |
|
287
|
|
|
|
|
|
|
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A |
|
288
|
|
|
|
|
|
|
PARTICULAR PURPOSE. See the GNU General Public License for more details. |
|
289
|
|
|
|
|
|
|
|
|
290
|
|
|
|
|
|
|
You should have received a copy of the GNU General Public License along with |
|
291
|
|
|
|
|
|
|
this program; if not, write to the Free Software Foundation, Inc., 59 Temple |
|
292
|
|
|
|
|
|
|
Place, Suite 330, Boston, MA 02111-1307, USA. |
|
293
|
|
|
|
|
|
|
|
|
294
|
|
|
|
|
|
|
=cut |
|
295
|
|
|
|
|
|
|
|
|
296
|
|
|
|
|
|
|
1; |