line |
stmt |
bran |
cond |
sub |
pod |
time |
code |
1
|
|
|
|
|
|
|
=head1 NAME |
2
|
|
|
|
|
|
|
|
3
|
|
|
|
|
|
|
Astro::Coord::ECI::TLE::Iridium - Compute behavior of Iridium satellites |
4
|
|
|
|
|
|
|
|
5
|
|
|
|
|
|
|
=head1 SYNOPSIS |
6
|
|
|
|
|
|
|
|
7
|
|
|
|
|
|
|
The following is a semi-brief script to calculate Iridium flares. You |
8
|
|
|
|
|
|
|
will need to substitute your own location where indicated. |
9
|
|
|
|
|
|
|
|
10
|
|
|
|
|
|
|
use Astro::SpaceTrack; |
11
|
|
|
|
|
|
|
use Astro::Coord::ECI; |
12
|
|
|
|
|
|
|
use Astro::Coord::ECI::TLE; |
13
|
|
|
|
|
|
|
use Astro::Coord::ECI::Utils qw{deg2rad rad2deg}; |
14
|
|
|
|
|
|
|
|
15
|
|
|
|
|
|
|
# 1600 Pennsylvania Avenue, Washington DC, USA |
16
|
|
|
|
|
|
|
my $your_north_latitude_in_degrees = 38.898748; |
17
|
|
|
|
|
|
|
my $your_east_longitude_in_degrees = -77.037684; |
18
|
|
|
|
|
|
|
my $your_height_above_sea_level_in_meters = 16.68; |
19
|
|
|
|
|
|
|
|
20
|
|
|
|
|
|
|
# Create object representing the observers' location. |
21
|
|
|
|
|
|
|
# Note that the input to geodetic() is latitude north |
22
|
|
|
|
|
|
|
# and longitude west, in RADIANS, and height above sea |
23
|
|
|
|
|
|
|
# level in KILOMETERS. |
24
|
|
|
|
|
|
|
|
25
|
|
|
|
|
|
|
my $loc = Astro::Coord::ECI->geodetic ( |
26
|
|
|
|
|
|
|
deg2rad ($your_north_latitude_in_degrees), |
27
|
|
|
|
|
|
|
deg2rad ($your_east_longitude_in_degrees), |
28
|
|
|
|
|
|
|
$your_height_above_sea_level_in_meters/1000); |
29
|
|
|
|
|
|
|
|
30
|
|
|
|
|
|
|
# Get all the Iridium data from CelesTrak; it is direct- |
31
|
|
|
|
|
|
|
# fetched, so no password is needed. |
32
|
|
|
|
|
|
|
|
33
|
|
|
|
|
|
|
my $st = Astro::SpaceTrack->new (direct => 1); |
34
|
|
|
|
|
|
|
my $data = $st->celestrak ('iridium'); |
35
|
|
|
|
|
|
|
$data->is_success or die $data->status_line; |
36
|
|
|
|
|
|
|
|
37
|
|
|
|
|
|
|
# Parse the fetched data, yielding Iridium objects. |
38
|
|
|
|
|
|
|
|
39
|
|
|
|
|
|
|
my @sats = Astro::Coord::ECI::TLE->parse ($data->content); |
40
|
|
|
|
|
|
|
|
41
|
|
|
|
|
|
|
# We want flares for the next 2 days. In order to try to |
42
|
|
|
|
|
|
|
# duplicate http://www.heavens-above.com/ as closely as |
43
|
|
|
|
|
|
|
# possible, we throw away daytime flares dimmer than -6, |
44
|
|
|
|
|
|
|
# and nighttime flares dimmer than -1. We also calculate |
45
|
|
|
|
|
|
|
# flares for spares, and assume night is any time the Sun |
46
|
|
|
|
|
|
|
# is below the horizon. |
47
|
|
|
|
|
|
|
|
48
|
|
|
|
|
|
|
my $start = time (); |
49
|
|
|
|
|
|
|
my $finish = $start + 2 * 86400; |
50
|
|
|
|
|
|
|
my @flares; |
51
|
|
|
|
|
|
|
my %mag_limit = (am => -1, day => -6, pm => -1); |
52
|
|
|
|
|
|
|
foreach my $irid (@sats) { |
53
|
|
|
|
|
|
|
$irid->can_flare (1) or next; |
54
|
|
|
|
|
|
|
$irid->set (twilight => 0); |
55
|
|
|
|
|
|
|
foreach my $flare ($irid->flare ($loc, $start, $finish)) { |
56
|
|
|
|
|
|
|
$flare->{magnitude} <= $mag_limit{$flare->{type}} |
57
|
|
|
|
|
|
|
and push @flares, $flare; |
58
|
|
|
|
|
|
|
} |
59
|
|
|
|
|
|
|
} |
60
|
|
|
|
|
|
|
print <
|
61
|
|
|
|
|
|
|
Date/Time Satellite Elevation Azimuth Magnitude |
62
|
|
|
|
|
|
|
eod |
63
|
|
|
|
|
|
|
foreach my $flare (sort {$a->{time} <=> $b->{time}} @flares) { |
64
|
|
|
|
|
|
|
|
65
|
|
|
|
|
|
|
# If we wanted to make use of the Iridium object that |
66
|
|
|
|
|
|
|
# produced the flare (e.g. to get apparant equatorial |
67
|
|
|
|
|
|
|
# coordinates) we would need to set the time first. |
68
|
|
|
|
|
|
|
## $flare->{body}->universal ($flare->{time}); |
69
|
|
|
|
|
|
|
|
70
|
|
|
|
|
|
|
# The returned angles are in radians, so we need to |
71
|
|
|
|
|
|
|
# convert back to degrees. |
72
|
|
|
|
|
|
|
|
73
|
|
|
|
|
|
|
printf "%s %-15s %9.1f %9.1f %5.1f\n", |
74
|
|
|
|
|
|
|
scalar localtime $flare->{time}, |
75
|
|
|
|
|
|
|
$flare->{body}->get ('name'), |
76
|
|
|
|
|
|
|
rad2deg ($flare->{elevation}), |
77
|
|
|
|
|
|
|
rad2deg ($flare->{azimuth}), |
78
|
|
|
|
|
|
|
$flare->{magnitude}; |
79
|
|
|
|
|
|
|
} |
80
|
|
|
|
|
|
|
|
81
|
|
|
|
|
|
|
=head1 NOTICE -- IRIDIUM SUPPORT |
82
|
|
|
|
|
|
|
|
83
|
|
|
|
|
|
|
As of early 2017 the flaring Iridium satellites are being taken out of |
84
|
|
|
|
|
|
|
service, to be replaced by non-flaring Iridium Next satellites. Once the |
85
|
|
|
|
|
|
|
flaring Iridium satellites are out of service, I plan to deprecate and |
86
|
|
|
|
|
|
|
remove all functionality relating to the acquisition of Iridium status. |
87
|
|
|
|
|
|
|
|
88
|
|
|
|
|
|
|
I have not yet decided on the disposition of |
89
|
|
|
|
|
|
|
L. My |
90
|
|
|
|
|
|
|
thought at the moment is that it will be moved to its own package rather |
91
|
|
|
|
|
|
|
than deleted, because the flare functionality may be of historical |
92
|
|
|
|
|
|
|
interest. By the same reasoning, the TLE parsing logic in |
93
|
|
|
|
|
|
|
L will remain able to |
94
|
|
|
|
|
|
|
rebless satellites as Iridium, but the canned status will be 'tumbling'. |
95
|
|
|
|
|
|
|
|
96
|
|
|
|
|
|
|
=head1 DESCRIPTION |
97
|
|
|
|
|
|
|
|
98
|
|
|
|
|
|
|
This class is a subclass of |
99
|
|
|
|
|
|
|
L, representing |
100
|
|
|
|
|
|
|
original-design Iridium satellites. This class will probably B work |
101
|
|
|
|
|
|
|
for the Iridium Next satellites, which are being launched starting early |
102
|
|
|
|
|
|
|
2017. |
103
|
|
|
|
|
|
|
|
104
|
|
|
|
|
|
|
The C<< Astro::Coord::ECI::TLE->parse() >> method makes use of |
105
|
|
|
|
|
|
|
built-in data to determine which satellites to rebless into this class, |
106
|
|
|
|
|
|
|
based on the object's NORAD SATCAT ID. This internal data can be |
107
|
|
|
|
|
|
|
modified using the Astro::Coord::ECI::TLE->status method to correct |
108
|
|
|
|
|
|
|
errors or for historical research. It is also possible to get an Iridium |
109
|
|
|
|
|
|
|
object by calling $tle->rebless (iridium => {status => $status}) |
110
|
|
|
|
|
|
|
directly. |
111
|
|
|
|
|
|
|
|
112
|
|
|
|
|
|
|
What this subclass adds is the ability to generate information on |
113
|
|
|
|
|
|
|
Iridium flares (or glints, as they are also called). Members of this |
114
|
|
|
|
|
|
|
class are considered capable of generating flares based on their status, |
115
|
|
|
|
|
|
|
as follows: |
116
|
|
|
|
|
|
|
|
117
|
|
|
|
|
|
|
0 => in service |
118
|
|
|
|
|
|
|
1 => spare (may or may not flare) |
119
|
|
|
|
|
|
|
2 => failed - no predictable flares. |
120
|
|
|
|
|
|
|
|
121
|
|
|
|
|
|
|
CelesTrak-style statuses ('+', 'S', and '-' respectively) are accepted |
122
|
|
|
|
|
|
|
on input. See L method |
123
|
|
|
|
|
|
|
iridium_status for a way to get current Iridium constellation status. |
124
|
|
|
|
|
|
|
|
125
|
|
|
|
|
|
|
=head2 Methods |
126
|
|
|
|
|
|
|
|
127
|
|
|
|
|
|
|
This class adds the following public methods: |
128
|
|
|
|
|
|
|
|
129
|
|
|
|
|
|
|
=over |
130
|
|
|
|
|
|
|
|
131
|
|
|
|
|
|
|
=cut |
132
|
|
|
|
|
|
|
|
133
|
|
|
|
|
|
|
package Astro::Coord::ECI::TLE::Iridium; |
134
|
|
|
|
|
|
|
|
135
|
3
|
|
|
3
|
|
229132
|
use strict; |
|
3
|
|
|
|
|
19
|
|
|
3
|
|
|
|
|
65
|
|
136
|
3
|
|
|
3
|
|
11
|
use warnings; |
|
3
|
|
|
|
|
5
|
|
|
3
|
|
|
|
|
65
|
|
137
|
|
|
|
|
|
|
|
138
|
3
|
|
|
3
|
|
12
|
use base qw{ Astro::Coord::ECI::TLE }; |
|
3
|
|
|
|
|
3
|
|
|
3
|
|
|
|
|
1276
|
|
139
|
|
|
|
|
|
|
|
140
|
|
|
|
|
|
|
our $VERSION = '0.131_01'; |
141
|
|
|
|
|
|
|
|
142
|
3
|
|
|
3
|
|
81511
|
use Astro::Coord::ECI::Utils 0.091 qw{:all}; |
|
3
|
|
|
|
|
74
|
|
|
3
|
|
|
|
|
832
|
|
143
|
3
|
|
|
3
|
|
17
|
use Carp; |
|
3
|
|
|
|
|
4
|
|
|
3
|
|
|
|
|
114
|
|
144
|
3
|
|
|
3
|
|
12
|
use POSIX qw{floor strftime}; # For debugging |
|
3
|
|
|
|
|
7
|
|
|
3
|
|
|
|
|
19
|
|
145
|
|
|
|
|
|
|
|
146
|
3
|
|
|
3
|
|
170
|
use constant ATTRIBUTE_KEY => '_sub_TLE_Iridium'; |
|
3
|
|
|
|
|
5
|
|
|
3
|
|
|
|
|
154
|
|
147
|
3
|
|
|
3
|
|
14
|
use constant DEFAULT_MAX_MIRROR_ANGLE => deg2rad (10); |
|
3
|
|
|
|
|
5
|
|
|
3
|
|
|
|
|
9
|
|
148
|
3
|
|
|
3
|
|
129
|
use constant MMAAREA => 1.88 * .86; # Area of MMA, in square meters. |
|
3
|
|
|
|
|
4
|
|
|
3
|
|
|
|
|
128
|
|
149
|
3
|
|
|
3
|
|
14
|
use constant MMAPHI => deg2rad (-130); # The MMAs are at an angle of |
|
3
|
|
|
|
|
4
|
|
|
3
|
|
|
|
|
11
|
|
150
|
|
|
|
|
|
|
# 40 degrees to the axis, so |
151
|
|
|
|
|
|
|
# we need to lay them back 130 |
152
|
|
|
|
|
|
|
# degrees (90 + 40) to make |
153
|
|
|
|
|
|
|
# them "flat". |
154
|
3
|
|
|
3
|
|
152
|
use constant TWOPIOVER3 => TWOPI / 3; # 120 degrees, in radians. |
|
3
|
|
|
|
|
5
|
|
|
3
|
|
|
|
|
106
|
|
155
|
|
|
|
|
|
|
|
156
|
3
|
|
|
3
|
|
13
|
use constant BODY_STATUS_IS_OPERATIONAL => 0; |
|
3
|
|
|
|
|
5
|
|
|
3
|
|
|
|
|
103
|
|
157
|
3
|
|
|
3
|
|
14
|
use constant BODY_STATUS_IS_SPARE => 1; |
|
3
|
|
|
|
|
13
|
|
|
3
|
|
|
|
|
108
|
|
158
|
3
|
|
|
3
|
|
13
|
use constant BODY_STATUS_IS_TUMBLING => 2; |
|
3
|
|
|
|
|
4
|
|
|
3
|
|
|
|
|
122
|
|
159
|
3
|
|
|
3
|
|
16
|
use constant BODY_STATUS_IS_DECAYED => 3; |
|
3
|
|
|
|
|
15
|
|
|
3
|
|
|
|
|
2014
|
|
160
|
|
|
|
|
|
|
|
161
|
|
|
|
|
|
|
my %mutator = ( |
162
|
|
|
|
|
|
|
algorithm => sub { |
163
|
|
|
|
|
|
|
my ( $self, $name, $value ) = @_; |
164
|
|
|
|
|
|
|
my $method = "_flare_$value"; |
165
|
|
|
|
|
|
|
croak "Error - Unknown flare algorithm name $value" |
166
|
|
|
|
|
|
|
unless $self->can ($method); |
167
|
|
|
|
|
|
|
$self->{&ATTRIBUTE_KEY}{$name} = $value; |
168
|
|
|
|
|
|
|
$self->{&ATTRIBUTE_KEY}{_algorithm_method} = $method; |
169
|
|
|
|
|
|
|
}, |
170
|
|
|
|
|
|
|
status => \&_set_operational_status, |
171
|
|
|
|
|
|
|
); |
172
|
|
|
|
|
|
|
foreach my $key (qw{am day extinction max_mirror_angle pm status zone}) { |
173
|
|
|
|
|
|
|
$mutator{$key} = sub {$_[0]->{&ATTRIBUTE_KEY}{$_[1]} = $_[2]}; |
174
|
|
|
|
|
|
|
} |
175
|
|
|
|
|
|
|
|
176
|
|
|
|
|
|
|
my %accessor = (); |
177
|
|
|
|
|
|
|
foreach my $key (keys %mutator) { |
178
|
|
|
|
|
|
|
$accessor{$key} ||= sub {$_[0]->{&ATTRIBUTE_KEY}{$_[1]}} |
179
|
|
|
|
|
|
|
} |
180
|
|
|
|
|
|
|
|
181
|
|
|
|
|
|
|
my %static = ( # static values |
182
|
|
|
|
|
|
|
algorithm => 'fixed', |
183
|
|
|
|
|
|
|
am => 1, |
184
|
|
|
|
|
|
|
day => 1, |
185
|
|
|
|
|
|
|
extinction => 1, |
186
|
|
|
|
|
|
|
intrinsic_magnitude => 7.0, |
187
|
|
|
|
|
|
|
max_mirror_angle => DEFAULT_MAX_MIRROR_ANGLE, |
188
|
|
|
|
|
|
|
pm => 1, |
189
|
|
|
|
|
|
|
status => '', |
190
|
|
|
|
|
|
|
zone => undef, # Offset from GMT, in seconds |
191
|
|
|
|
|
|
|
); |
192
|
|
|
|
|
|
|
|
193
|
|
|
|
|
|
|
my %statatr = ( # for convenience of get() and put(). |
194
|
|
|
|
|
|
|
&ATTRIBUTE_KEY => \%static, |
195
|
|
|
|
|
|
|
); |
196
|
|
|
|
|
|
|
|
197
|
|
|
|
|
|
|
__PACKAGE__->alias (iridium => __PACKAGE__); |
198
|
|
|
|
|
|
|
|
199
|
|
|
|
|
|
|
# Pre-compute the transform vectors for each of the three Main |
200
|
|
|
|
|
|
|
# Mission Antennae, so that we do not have to repeatedly compute |
201
|
|
|
|
|
|
|
# the sin and cos of the relevant angles. The transform we are |
202
|
|
|
|
|
|
|
# doing is a rotation of theta radians about the Z axis (theta |
203
|
|
|
|
|
|
|
# being Main Mission Antenna index * 2 * PI / 3) to face the |
204
|
|
|
|
|
|
|
# MMA in the X direction, followed by a rotation of phi radians |
205
|
|
|
|
|
|
|
# about the Y axis (phi being -130 degrees) to lay the MMA back |
206
|
|
|
|
|
|
|
# into the X-Y plane. |
207
|
|
|
|
|
|
|
|
208
|
|
|
|
|
|
|
# Although we are using vector math for the actual operation, the |
209
|
|
|
|
|
|
|
# transform vectors are derived using matrix math, with the |
210
|
|
|
|
|
|
|
# resultant matrix being decomposed into the row vectors we need. |
211
|
|
|
|
|
|
|
# The actual computation is to premultiply the theta transform |
212
|
|
|
|
|
|
|
# matrix by the phi transform matrix: |
213
|
|
|
|
|
|
|
|
214
|
|
|
|
|
|
|
# +- -+ +- -+ |
215
|
|
|
|
|
|
|
# | cos(phi) 0 sin(phi) | | cos(theta) -sin(theta) 0 | |
216
|
|
|
|
|
|
|
# | 0 1 0 | X | sin(theta) cos(theta) 0 | |
217
|
|
|
|
|
|
|
# | -sin(phi) 0 cos(phi) | | 0 0 1 | |
218
|
|
|
|
|
|
|
# +- -+ +- -+ |
219
|
|
|
|
|
|
|
|
220
|
|
|
|
|
|
|
# +- -+ |
221
|
|
|
|
|
|
|
# | cos(theta) * cos(phi) -sin(theta) * cos(phi) sin(phi) | |
222
|
|
|
|
|
|
|
# = | sin(theta) cos(theta) 0 | |
223
|
|
|
|
|
|
|
# | -cos(theta) * sin(phi) sin(theta) * sin(phi) cos(phi) | |
224
|
|
|
|
|
|
|
# +- -+ |
225
|
|
|
|
|
|
|
|
226
|
|
|
|
|
|
|
my @transform_vector; |
227
|
|
|
|
|
|
|
{ # Begin local symbol block. |
228
|
|
|
|
|
|
|
my $cosphi = cos (MMAPHI); |
229
|
|
|
|
|
|
|
my $sinphi = sin (MMAPHI); |
230
|
|
|
|
|
|
|
|
231
|
|
|
|
|
|
|
foreach my $mma (0 .. 2) { |
232
|
|
|
|
|
|
|
my $theta = $mma * TWOPIOVER3; |
233
|
|
|
|
|
|
|
my $costheta = $theta ? cos ($theta) : 1; |
234
|
|
|
|
|
|
|
my $sintheta = $theta ? sin ($theta) : 0; |
235
|
|
|
|
|
|
|
|
236
|
|
|
|
|
|
|
push @transform_vector, |
237
|
|
|
|
|
|
|
[ [$costheta * $cosphi, - $sintheta * $cosphi, $sinphi], |
238
|
|
|
|
|
|
|
[$sintheta, $costheta, 0], |
239
|
|
|
|
|
|
|
[- $costheta * $sinphi, $sintheta * $sinphi, $cosphi], |
240
|
|
|
|
|
|
|
]; |
241
|
|
|
|
|
|
|
} |
242
|
|
|
|
|
|
|
} # End local symbol block. |
243
|
|
|
|
|
|
|
|
244
|
|
|
|
|
|
|
# We also pre-compute the inverse transforms, to facilitate the |
245
|
|
|
|
|
|
|
# recovery of the virtual image of the illuminating body. |
246
|
|
|
|
|
|
|
|
247
|
|
|
|
|
|
|
my @inverse_transform_vector = |
248
|
|
|
|
|
|
|
map {scalar _invert_matrix_list (@$_)} @transform_vector; |
249
|
|
|
|
|
|
|
|
250
|
|
|
|
|
|
|
=item $tle->after_reblessing (\%attribs); |
251
|
|
|
|
|
|
|
|
252
|
|
|
|
|
|
|
This method supports reblessing into a subclass, with the argument |
253
|
|
|
|
|
|
|
representing attributes that the subclass may wish to set. It is called |
254
|
|
|
|
|
|
|
by rebless() and should not be called by the user. |
255
|
|
|
|
|
|
|
|
256
|
|
|
|
|
|
|
At this level of the inheritance hierarchy, it sets the status of the |
257
|
|
|
|
|
|
|
object from the {status} key of the given hash. If this key is absent, |
258
|
|
|
|
|
|
|
the object is assumed capable of generating flares. |
259
|
|
|
|
|
|
|
|
260
|
|
|
|
|
|
|
=cut |
261
|
|
|
|
|
|
|
|
262
|
|
|
|
|
|
|
{ |
263
|
|
|
|
|
|
|
# This seems to me to be a bit of a crock, but I can think of no |
264
|
|
|
|
|
|
|
# other way to prevent the intrinsic_magnitude from being clobbered |
265
|
|
|
|
|
|
|
# as not relevant to the class. |
266
|
|
|
|
|
|
|
my %retain = map { $_ => 1 } |
267
|
|
|
|
|
|
|
qw{ intrinsic_magnitude }, keys %mutator; |
268
|
|
|
|
|
|
|
|
269
|
|
|
|
|
|
|
sub after_reblessing { |
270
|
8
|
|
|
8
|
1
|
4203
|
my ($self, $attrs) = @_; |
271
|
8
|
100
|
|
|
|
18
|
if (defined $attrs) { |
272
|
7
|
|
|
|
|
25
|
$attrs = {%$attrs}; |
273
|
|
|
|
|
|
|
} else { |
274
|
1
|
|
|
|
|
2
|
$attrs = {}; |
275
|
|
|
|
|
|
|
} |
276
|
8
|
50
|
|
|
|
21
|
HASH_REF eq ref $attrs or croak <<'EOD'; |
277
|
|
|
|
|
|
|
Error - The argument of after_reblessing(), if any, must be a hash |
278
|
|
|
|
|
|
|
reference. |
279
|
|
|
|
|
|
|
EOD |
280
|
8
|
|
|
|
|
25
|
foreach my $key (keys %static) { |
281
|
72
|
100
|
|
|
|
130
|
$attrs->{$key} = $static{$key} unless defined $attrs->{$key}; |
282
|
|
|
|
|
|
|
} |
283
|
8
|
|
|
|
|
35
|
foreach my $key (keys %$attrs) { |
284
|
107
|
100
|
|
|
|
155
|
delete $attrs->{$key} unless $retain{$key}; |
285
|
|
|
|
|
|
|
} |
286
|
8
|
|
|
|
|
33
|
$self->set (%$attrs); |
287
|
8
|
|
|
|
|
22
|
return; |
288
|
|
|
|
|
|
|
} |
289
|
|
|
|
|
|
|
} |
290
|
|
|
|
|
|
|
|
291
|
|
|
|
|
|
|
# see Astro::Coord::ECI->attribute (); |
292
|
|
|
|
|
|
|
|
293
|
|
|
|
|
|
|
sub attribute { |
294
|
0
|
|
|
0
|
1
|
0
|
my ($self, $name) = @_; |
295
|
0
|
0
|
|
|
|
0
|
return exists $accessor{$name} ? |
296
|
|
|
|
|
|
|
__PACKAGE__ : |
297
|
|
|
|
|
|
|
$self->SUPER::attribute ($name); |
298
|
|
|
|
|
|
|
} |
299
|
|
|
|
|
|
|
|
300
|
|
|
|
|
|
|
=item $tle->before_reblessing () |
301
|
|
|
|
|
|
|
|
302
|
|
|
|
|
|
|
This method supports reblessing into a subclass. It is intended to do |
303
|
|
|
|
|
|
|
any cleanup the old class needs before reblessing into the new class. It |
304
|
|
|
|
|
|
|
is called by rebless(), and should not be called by the user. |
305
|
|
|
|
|
|
|
|
306
|
|
|
|
|
|
|
At this level of the inheritance hierarchy, it removes the status |
307
|
|
|
|
|
|
|
attribute. |
308
|
|
|
|
|
|
|
|
309
|
|
|
|
|
|
|
=cut |
310
|
|
|
|
|
|
|
|
311
|
|
|
|
|
|
|
sub before_reblessing { |
312
|
5
|
|
|
5
|
1
|
168
|
my ($self) = @_; |
313
|
5
|
|
|
|
|
18
|
delete $self->{&ATTRIBUTE_KEY}; |
314
|
5
|
|
|
|
|
8
|
return; |
315
|
|
|
|
|
|
|
} |
316
|
|
|
|
|
|
|
|
317
|
|
|
|
|
|
|
=item $tle->can_flare ($spare); |
318
|
|
|
|
|
|
|
|
319
|
|
|
|
|
|
|
This method returns true (in the Perl sense) if the object is capable |
320
|
|
|
|
|
|
|
of producing flares, and false otherwise. If the optional $spare |
321
|
|
|
|
|
|
|
argument is true, spares are considered capable of flaring, otherwise |
322
|
|
|
|
|
|
|
not. If C<$spare> is C<'all'>, then all objects are considered capable |
323
|
|
|
|
|
|
|
of flaring. |
324
|
|
|
|
|
|
|
|
325
|
|
|
|
|
|
|
=cut |
326
|
|
|
|
|
|
|
|
327
|
|
|
|
|
|
|
sub can_flare { |
328
|
8
|
|
|
8
|
1
|
826
|
my ( $self, $spare ) = @_; |
329
|
8
|
100
|
100
|
|
|
28
|
defined $spare |
330
|
|
|
|
|
|
|
and 'all' eq $spare |
331
|
|
|
|
|
|
|
and return 1; |
332
|
7
|
|
|
|
|
13
|
my $status = $self->get ('status'); |
333
|
7
|
|
66
|
|
|
36
|
return !$status || $spare && $status == $self->BODY_STATUS_IS_SPARE; |
334
|
|
|
|
|
|
|
} |
335
|
|
|
|
|
|
|
|
336
|
|
|
|
|
|
|
=item @flares = $tle->flare ($sta, $start, $end); |
337
|
|
|
|
|
|
|
|
338
|
|
|
|
|
|
|
This method returns the list of flares produced by the given Iridium |
339
|
|
|
|
|
|
|
satellite at the given station between the given start time and the |
340
|
|
|
|
|
|
|
given end time. This list may be empty. If called in scalar context you |
341
|
|
|
|
|
|
|
get the number of flares. |
342
|
|
|
|
|
|
|
|
343
|
|
|
|
|
|
|
All arguments are optional, with the defaults being |
344
|
|
|
|
|
|
|
|
345
|
|
|
|
|
|
|
$station = the 'station' attribute |
346
|
|
|
|
|
|
|
$start = time() |
347
|
|
|
|
|
|
|
$end = $start + 1 day |
348
|
|
|
|
|
|
|
|
349
|
|
|
|
|
|
|
Each flare is represented by a reference to an anonymous hash, with |
350
|
|
|
|
|
|
|
elements as follows: |
351
|
|
|
|
|
|
|
|
352
|
|
|
|
|
|
|
angle => Mirror angle, radians |
353
|
|
|
|
|
|
|
appulse => information about the position of the Sun |
354
|
|
|
|
|
|
|
angle => distance from Sun to flare, radians |
355
|
|
|
|
|
|
|
body => reference to the Sun object |
356
|
|
|
|
|
|
|
area => Projected MMA area, square radians |
357
|
|
|
|
|
|
|
azimuth => Azimuth of flare, radians |
358
|
|
|
|
|
|
|
body => Reference to object producing flare |
359
|
|
|
|
|
|
|
center => information about the center of the flare |
360
|
|
|
|
|
|
|
body => location of the center of the flare |
361
|
|
|
|
|
|
|
magnitude => estimated magnitude at the center |
362
|
|
|
|
|
|
|
elevation => Elevation of flare, radians |
363
|
|
|
|
|
|
|
magnitude => Estimated magnitude |
364
|
|
|
|
|
|
|
mma => Flaring mma (0, 1, or 2) |
365
|
|
|
|
|
|
|
range => Range to flare, kilometers |
366
|
|
|
|
|
|
|
specular => True if specular reflection |
367
|
|
|
|
|
|
|
station => reference to the observer's location |
368
|
|
|
|
|
|
|
status => '' |
369
|
|
|
|
|
|
|
type => Type of flare (see notes) |
370
|
|
|
|
|
|
|
time => Time of flare |
371
|
|
|
|
|
|
|
virtual_image => Location of virtual image |
372
|
|
|
|
|
|
|
|
373
|
|
|
|
|
|
|
Note that: |
374
|
|
|
|
|
|
|
|
375
|
|
|
|
|
|
|
* The time of the object passed in the {body} element is not |
376
|
|
|
|
|
|
|
necessarily set to the time of the flare. |
377
|
|
|
|
|
|
|
|
378
|
|
|
|
|
|
|
* The {center}{body} element contains an Astro::Coord::ECI object |
379
|
|
|
|
|
|
|
set to the location of the center of the flare at the given time. |
380
|
|
|
|
|
|
|
The center is defined as the intersection of the plane of the |
381
|
|
|
|
|
|
|
observer's horizon with the line from the virtual image of the |
382
|
|
|
|
|
|
|
illuminating body through the flaring satellite. |
383
|
|
|
|
|
|
|
|
384
|
|
|
|
|
|
|
* The {mma} element indicates which Main Mission Antenna generated |
385
|
|
|
|
|
|
|
the flare. The antennae are numbered clockwise (looking down on the |
386
|
|
|
|
|
|
|
vehicle) from the front, so 0, 1, and 2 correspond to Heavens Above's |
387
|
|
|
|
|
|
|
'Front', 'Right', and 'Left' respectively. |
388
|
|
|
|
|
|
|
|
389
|
|
|
|
|
|
|
* The {specular} element is actually the limb darkening factor if |
390
|
|
|
|
|
|
|
applicable. Otherwise, it is 1 if the reflection is specular, and 0 if |
391
|
|
|
|
|
|
|
not. |
392
|
|
|
|
|
|
|
|
393
|
|
|
|
|
|
|
* The {status} key is reserved for an explanation of why there is no |
394
|
|
|
|
|
|
|
flare. When the hash is generated by the flare() method, this key will |
395
|
|
|
|
|
|
|
always be false (in the Perl sense). |
396
|
|
|
|
|
|
|
|
397
|
|
|
|
|
|
|
* The {type} element contains 'day' if the flare occurs between the |
398
|
|
|
|
|
|
|
beginning of twilight in the morning and the end of twilight in the |
399
|
|
|
|
|
|
|
evening, 'am' if the flare is after midnight but not during the day, |
400
|
|
|
|
|
|
|
and 'pm' if the flare is before midnight but not during the day. |
401
|
|
|
|
|
|
|
|
402
|
|
|
|
|
|
|
* The {virtual_image} element is an Astro::Coord::ECI object |
403
|
|
|
|
|
|
|
representing the location of the virtual image of the illuminator |
404
|
|
|
|
|
|
|
at the time of the flare. |
405
|
|
|
|
|
|
|
|
406
|
|
|
|
|
|
|
Why does this software produce different results than |
407
|
|
|
|
|
|
|
L? |
408
|
|
|
|
|
|
|
|
409
|
|
|
|
|
|
|
The short answer is "I don't know, because I don't know how Heavens |
410
|
|
|
|
|
|
|
Above gets their answers." |
411
|
|
|
|
|
|
|
|
412
|
|
|
|
|
|
|
In a little more detail, there appear to be several things going on: |
413
|
|
|
|
|
|
|
|
414
|
|
|
|
|
|
|
First, there appears to be no standard reference for how to calculate |
415
|
|
|
|
|
|
|
the magnitude of a flare. This module calculates specular reflections |
416
|
|
|
|
|
|
|
as though the sky were opaque, and the flaring Main Mission Antenna |
417
|
|
|
|
|
|
|
were a window through to the virtual image of the Sun. Limb darkening |
418
|
|
|
|
|
|
|
is taken into account, as is atmospheric extinction. Non-specular |
419
|
|
|
|
|
|
|
flares are calculated by a fairly arbitrary equation whose coefficients |
420
|
|
|
|
|
|
|
were fitted to visual flare magnitude estimates collected by Ron Lee |
421
|
|
|
|
|
|
|
and made available on the Web by Randy John as part of his skysat |
422
|
|
|
|
|
|
|
web site at C (missing; see |
423
|
|
|
|
|
|
|
L). Atmospheric extinction |
424
|
|
|
|
|
|
|
is also taken into account for the non-specular flares. |
425
|
|
|
|
|
|
|
|
426
|
|
|
|
|
|
|
Atmospheric extinction is calculated according to the article by Daniel |
427
|
|
|
|
|
|
|
W. Green in the July 1992 issue of "International Comet Quarterly", and |
428
|
|
|
|
|
|
|
available at L. Because |
429
|
|
|
|
|
|
|
Heavens Above does not display flares dimmer than a certain magnitude |
430
|
|
|
|
|
|
|
(-6 for day flares, and apparently 0 for night flares), it may not |
431
|
|
|
|
|
|
|
display a flare that this code predicts. I have no information how |
432
|
|
|
|
|
|
|
Heavens Above calculates magnitudes, but I find that this class gives |
433
|
|
|
|
|
|
|
estimates about a magnitude brighter than Heavens Above at the dim end |
434
|
|
|
|
|
|
|
of the scale. |
435
|
|
|
|
|
|
|
|
436
|
|
|
|
|
|
|
Second, I suspect that the positions and velocities calculated by |
437
|
|
|
|
|
|
|
Astro::Coord::ECI::TLE differ slightly from those used by Heavens Above. |
438
|
|
|
|
|
|
|
I do not know this, because I do not know what positions Heavens Above |
439
|
|
|
|
|
|
|
uses, but there are slight differences among the results of all the |
440
|
|
|
|
|
|
|
orbital propagation models I have looked at. All I can say about the |
441
|
|
|
|
|
|
|
accuracy of Astro::Coord::ECI::TLE is that it duplicates the test data |
442
|
|
|
|
|
|
|
given in "Spacetrack Report Number Three". But small differences are |
443
|
|
|
|
|
|
|
important -- 0.1 degree at the satellite can make the difference between |
444
|
|
|
|
|
|
|
seeing and not seeing a flare, and smaller differences can affect the |
445
|
|
|
|
|
|
|
magnitude predictions, especially if they make the difference between |
446
|
|
|
|
|
|
|
predicting a specular or non-specular flare. Occasionally I find that I |
447
|
|
|
|
|
|
|
get very different results than Heavens Above, even when using orbital |
448
|
|
|
|
|
|
|
data published on that web site. |
449
|
|
|
|
|
|
|
|
450
|
|
|
|
|
|
|
Third, Heavens Above issues predictions on satellites that my source |
451
|
|
|
|
|
|
|
says are spares. I have skipped the spares by default because I do not |
452
|
|
|
|
|
|
|
know that their attitudes are maintained to the requisite precision, |
453
|
|
|
|
|
|
|
though perhaps they would be, to demonstrate that the spares are |
454
|
|
|
|
|
|
|
functional. This software currently uses the Iridium status from |
455
|
|
|
|
|
|
|
CelesTrak (L), since |
456
|
|
|
|
|
|
|
it represents one-stop shopping, and Dr. Kelso has expressed the intent |
457
|
|
|
|
|
|
|
to check with Iridium Satellite LLC monthly for status. Mike McCants' |
458
|
|
|
|
|
|
|
"Status of Iridium Payloads" at |
459
|
|
|
|
|
|
|
C (no longer |
460
|
|
|
|
|
|
|
maintained) noted that flares may be unreliable for spares, so can_flare |
461
|
|
|
|
|
|
|
() returns false for them. If this is not what you want, call can_flare |
462
|
|
|
|
|
|
|
with a true value (e.g. C). |
463
|
|
|
|
|
|
|
|
464
|
|
|
|
|
|
|
Fourth, the Heavens Above definition of 'daytime' differs from mine. |
465
|
|
|
|
|
|
|
Heavens Above does not document what their definition is, at least |
466
|
|
|
|
|
|
|
not that I have found. My definition of daytime includes twilight, |
467
|
|
|
|
|
|
|
which by default means the center of the Sun is less than 6 degrees |
468
|
|
|
|
|
|
|
below the horizon. I know that, using that definition, this software |
469
|
|
|
|
|
|
|
classifies some flares as daytime flares which Heavens Above classifies |
470
|
|
|
|
|
|
|
as nighttime flares. It appears to me that Heavens Above considers it |
471
|
|
|
|
|
|
|
night whenever the Sun is below the horizon. |
472
|
|
|
|
|
|
|
|
473
|
|
|
|
|
|
|
Fifth, the orbital elements used to make the prediction can differ. |
474
|
|
|
|
|
|
|
I have occasionally seen Heavens Above using elements a day old, |
475
|
|
|
|
|
|
|
versus the ones available from Space Track, and seen this difference |
476
|
|
|
|
|
|
|
make a difference of six or eight seconds in the time of the flare. |
477
|
|
|
|
|
|
|
|
478
|
|
|
|
|
|
|
Sixth, this method takes no account of the decrease in magnitude that |
479
|
|
|
|
|
|
|
would result from the Sun being extremely close to the horizon as seen |
480
|
|
|
|
|
|
|
from the flaring satellite. I do not know whether Heavens Above does |
481
|
|
|
|
|
|
|
this or not, but I have seen an instance where this code predicted a |
482
|
|
|
|
|
|
|
flare but Heavens Above did not, where the observed flare was much |
483
|
|
|
|
|
|
|
dimmer than this code predicted, and reddened. Subsequent calculations |
484
|
|
|
|
|
|
|
put the Sun 0.1 degrees above the horizon as seen from the satellite. |
485
|
|
|
|
|
|
|
|
486
|
|
|
|
|
|
|
B that the algorithm used to calculate flares does not work at |
487
|
|
|
|
|
|
|
latitudes beyond 85 degrees north or south, nor does it work for any |
488
|
|
|
|
|
|
|
location that is not fixed to the Earth's surface. This may be fixed in |
489
|
|
|
|
|
|
|
a future release. The chances of it being fixed in a future release will |
490
|
|
|
|
|
|
|
be enhanced if someone claims to actually need it. This someone will be |
491
|
|
|
|
|
|
|
invited to help test the new code. |
492
|
|
|
|
|
|
|
|
493
|
|
|
|
|
|
|
B that as of version 0.002_01 of this class, the 'backdate' |
494
|
|
|
|
|
|
|
attribute determines whether a set of orbital elements can be used for |
495
|
|
|
|
|
|
|
computations of flares before the epoch of the elements. If 'backdate' |
496
|
|
|
|
|
|
|
is false and the start time passed to flare() is earlier than the epoch, |
497
|
|
|
|
|
|
|
the start time is silently moved forward to the epoch. The initial |
498
|
|
|
|
|
|
|
version of this functionality raised an exception if this adjustment |
499
|
|
|
|
|
|
|
placed the start time after the end time, but as of version 0.003_01 of |
500
|
|
|
|
|
|
|
this class, you simply get no flares if this happens. |
501
|
|
|
|
|
|
|
|
502
|
|
|
|
|
|
|
=cut |
503
|
|
|
|
|
|
|
|
504
|
3
|
|
|
3
|
|
17
|
use constant DTFMT => '%d-%b-%Y %H:%M:%S (GMT)'; |
|
3
|
|
|
|
|
9
|
|
|
3
|
|
|
|
|
130
|
|
505
|
3
|
|
|
3
|
|
13
|
use constant DAY_TOLERANCE => deg2rad (2); # Distance Sun moves in 8 minutes. |
|
3
|
|
|
|
|
6
|
|
|
3
|
|
|
|
|
7
|
|
506
|
3
|
|
|
3
|
|
129
|
use constant AM_START_LIMIT => 86400 - 480; # 8 minutes before midnight. |
|
3
|
|
|
|
|
4
|
|
|
3
|
|
|
|
|
111
|
|
507
|
3
|
|
|
3
|
|
12
|
use constant AM_END_LIMIT => 43200 + 480; # 8 minutes after noon. |
|
3
|
|
|
|
|
5
|
|
|
3
|
|
|
|
|
105
|
|
508
|
3
|
|
|
3
|
|
13
|
use constant PM_START_LIMIT => 43200 - 480; # 8 minutes before noon. |
|
3
|
|
|
|
|
4
|
|
|
3
|
|
|
|
|
119
|
|
509
|
3
|
|
|
3
|
|
13
|
use constant PM_END_LIMIT => 480; # 8 minutes after midnight. |
|
3
|
|
|
|
|
10
|
|
|
3
|
|
|
|
|
5518
|
|
510
|
|
|
|
|
|
|
|
511
|
|
|
|
|
|
|
sub flare { |
512
|
2
|
|
|
2
|
1
|
120
|
my ( $self, @args ) = __default_station( @_ ); |
513
|
2
|
|
|
|
|
50
|
my $method = $self->{&ATTRIBUTE_KEY}{_algorithm_method}; |
514
|
2
|
|
|
|
|
13
|
return $self->$method (@args); |
515
|
|
|
|
|
|
|
} |
516
|
|
|
|
|
|
|
|
517
|
|
|
|
|
|
|
# Called as $self->$method() |
518
|
|
|
|
|
|
|
sub _flare_fixed { ## no critic (ProhibitUnusedPrivateSubroutines) |
519
|
2
|
|
|
2
|
|
4
|
my $self = shift; |
520
|
2
|
|
|
|
|
4
|
my $station = shift; |
521
|
|
|
|
|
|
|
{ |
522
|
2
|
|
|
|
|
7
|
local $@; |
|
2
|
|
|
|
|
4
|
|
523
|
2
|
50
|
|
|
|
5
|
__instance( $station, 'Astro::Coord::ECI' ) or croak <
|
524
|
|
|
|
|
|
|
Error - The station must be a subclass of Astro::Coord::ECI. |
525
|
|
|
|
|
|
|
eod |
526
|
|
|
|
|
|
|
} |
527
|
2
|
|
33
|
|
|
24
|
my $start = shift || time (); |
528
|
2
|
|
33
|
|
|
5
|
my $end = shift || $start + SECSPERDAY; |
529
|
2
|
50
|
|
|
|
6
|
$end >= $start or croak <
|
530
|
|
|
|
|
|
|
Error - End time must be after start time. |
531
|
|
|
|
|
|
|
eod |
532
|
|
|
|
|
|
|
|
533
|
2
|
|
|
|
|
9
|
$start = $self->max_effective_date($start); |
534
|
2
|
50
|
|
|
|
27
|
$start > $end and return; |
535
|
|
|
|
|
|
|
|
536
|
2
|
|
|
|
|
2
|
my @flares; |
537
|
2
|
|
|
|
|
4
|
my $illum = $self->get ('illum'); |
538
|
2
|
|
|
|
|
13
|
my $horizon = $self->get ('horizon'); |
539
|
2
|
|
|
|
|
31
|
my $twilight = $self->get ('twilight'); |
540
|
2
|
|
|
|
|
28
|
my $sun = $self->get( 'sun' ); |
541
|
|
|
|
|
|
|
|
542
|
2
|
|
|
|
|
61
|
my %want = ( |
543
|
|
|
|
|
|
|
am => $self->get ('am'), |
544
|
|
|
|
|
|
|
day => $self->get ('day'), |
545
|
|
|
|
|
|
|
pm => $self->get ('pm'), |
546
|
|
|
|
|
|
|
); |
547
|
2
|
|
33
|
|
|
19
|
my $check_time = !($want{am} && $want{day} && $want{pm}); |
548
|
2
|
|
|
|
|
5
|
my $day_limit = $twilight - DAY_TOLERANCE; |
549
|
2
|
|
|
|
|
4
|
my $night_limit = $twilight + DAY_TOLERANCE; |
550
|
2
|
|
|
|
|
5
|
my $illum_tolerance = deg2rad (15); |
551
|
|
|
|
|
|
|
|
552
|
|
|
|
|
|
|
# We assume our observing location is fixed on the surface of the |
553
|
|
|
|
|
|
|
# Earth, and take advantage of the fact that an Iridium orbit is |
554
|
|
|
|
|
|
|
# very nearly polar. We use these to calculate the intervals |
555
|
|
|
|
|
|
|
# between successive passes through the observer's latitude, since |
556
|
|
|
|
|
|
|
# the satellite is visible then if ever. |
557
|
|
|
|
|
|
|
|
558
|
|
|
|
|
|
|
### CAVEAT: The typical orbital inclination of an Iridium satellite |
559
|
|
|
|
|
|
|
### is about 85 degrees. So this algorithm only works between |
560
|
|
|
|
|
|
|
### latitudes 85 north and 85 south. |
561
|
|
|
|
|
|
|
|
562
|
2
|
|
|
|
|
14
|
my $satlat = ($self->universal ($start)->geodetic ())[0]; |
563
|
2
|
|
|
|
|
20
|
my $zdot = ($self->eci)[5]; |
564
|
2
|
|
|
|
|
64
|
my $stalat = ($station->geodetic ())[0]; |
565
|
2
|
|
|
|
|
47
|
my $period = $self->period; |
566
|
2
|
|
|
|
|
26
|
my $angular_velocity = TWOPI / $period; |
567
|
2
|
0
|
|
|
|
18
|
my ($time, $asc) = ($zdot > 0 ? |
|
|
50
|
|
|
|
|
|
|
|
50
|
|
|
|
|
|
568
|
|
|
|
|
|
|
$satlat < $stalat ? (($stalat - $satlat) / $angular_velocity, 1) : |
569
|
|
|
|
|
|
|
((PI - $stalat - $satlat) / $angular_velocity, 0) : |
570
|
|
|
|
|
|
|
$satlat < $stalat ? |
571
|
|
|
|
|
|
|
((PI + $stalat + $satlat) / $angular_velocity, 1) : |
572
|
|
|
|
|
|
|
(($satlat - $stalat) / $angular_velocity, 0)); |
573
|
2
|
|
|
|
|
5
|
$time += $start; |
574
|
2
|
|
|
|
|
5
|
my @deltas = ( |
575
|
|
|
|
|
|
|
(PIOVER2 + $stalat) * 2 / $angular_velocity, |
576
|
|
|
|
|
|
|
(PIOVER2 - $stalat) * 2 / $angular_velocity, |
577
|
|
|
|
|
|
|
); |
578
|
|
|
|
|
|
|
|
579
|
|
|
|
|
|
|
# At this point the time represents (approximately, because our |
580
|
|
|
|
|
|
|
# calculated period is a little scant) a moment when the |
581
|
|
|
|
|
|
|
# satellite crosses the observer's latitude. |
582
|
|
|
|
|
|
|
|
583
|
|
|
|
|
|
|
# Pick up a copy of our max mirror angle so we don't have to call |
584
|
|
|
|
|
|
|
# get () repeatedly. |
585
|
|
|
|
|
|
|
|
586
|
2
|
|
|
|
|
5
|
my $max_mirror_angle = $self->get ('max_mirror_angle'); |
587
|
|
|
|
|
|
|
|
588
|
|
|
|
|
|
|
# While this time is less than our end time ... |
589
|
|
|
|
|
|
|
|
590
|
2
|
|
|
|
|
9
|
while ($time < $end) { |
591
|
|
|
|
|
|
|
|
592
|
|
|
|
|
|
|
# Calculate location of satellite. |
593
|
|
|
|
|
|
|
|
594
|
66
|
|
|
|
|
142
|
$self->universal ($time); |
595
|
66
|
|
|
|
|
11852
|
my ($satlat, $satlon, $satalt) = $self->geodetic; |
596
|
|
|
|
|
|
|
|
597
|
|
|
|
|
|
|
# Correct time to put satellite at same latitude as station. |
598
|
|
|
|
|
|
|
|
599
|
66
|
100
|
|
|
|
552
|
$time += ($asc ? $stalat - $satlat : $satlat - $stalat) |
600
|
|
|
|
|
|
|
/ $angular_velocity; |
601
|
66
|
|
|
|
|
115
|
($satlat, $satlon, $satalt) = $self->universal ($time)->geodetic; |
602
|
|
|
|
|
|
|
|
603
|
|
|
|
|
|
|
# Calculate whether satellite is above horizon. |
604
|
|
|
|
|
|
|
|
605
|
66
|
|
|
|
|
560
|
my ( undef, $elev, $rng ) = $station->azel_offset( $self, 0 ); |
606
|
66
|
100
|
|
|
|
3078
|
$elev > $horizon or next; |
607
|
|
|
|
|
|
|
|
608
|
|
|
|
|
|
|
# Check whether we are interested in this potential flare, based |
609
|
|
|
|
|
|
|
# on whether it might be during the day, or am, or pm. |
610
|
|
|
|
|
|
|
|
611
|
4
|
50
|
0
|
|
|
18
|
$check_time and (eval { |
612
|
0
|
|
|
|
|
0
|
my $sun_elev = ($station->azel ($sun->universal ($time)))[1]; |
613
|
0
|
0
|
0
|
|
|
0
|
($want{day} && $sun_elev > $day_limit) and return 1; |
614
|
0
|
0
|
0
|
|
|
0
|
(($want{am} || $want{pm}) && $sun_elev < $night_limit) or return 0; |
|
|
|
0
|
|
|
|
|
615
|
0
|
|
|
|
|
0
|
my @local_time = $self->_time_in_zone( $time ); |
616
|
0
|
|
|
|
|
0
|
my $time_of_day = ($local_time[2] * 60 + $local_time[1]) * 60 |
617
|
|
|
|
|
|
|
+ $local_time[0]; |
618
|
0
|
0
|
0
|
|
|
0
|
($want{am} && ($time_of_day > AM_START_LIMIT || |
|
|
|
0
|
|
|
|
|
619
|
|
|
|
|
|
|
$time_of_day < AM_END_LIMIT)) and return 1; |
620
|
0
|
0
|
0
|
|
|
0
|
($want{pm} && ($time_of_day > PM_START_LIMIT || |
|
|
|
0
|
|
|
|
|
621
|
|
|
|
|
|
|
$time_of_day < PM_END_LIMIT)) and return 1; |
622
|
0
|
|
|
|
|
0
|
0; |
623
|
|
|
|
|
|
|
} || next); |
624
|
|
|
|
|
|
|
|
625
|
|
|
|
|
|
|
# Calculate whether the satellite is illuminated. |
626
|
|
|
|
|
|
|
|
627
|
|
|
|
|
|
|
## my $lit = ($self->azel ($illum->universal ($time)))[1] >= |
628
|
4
|
50
|
|
|
|
18
|
($self->azel ($illum->universal ($time)))[1] >= |
629
|
|
|
|
|
|
|
$self->dip () - $illum_tolerance or next; |
630
|
|
|
|
|
|
|
|
631
|
|
|
|
|
|
|
# For our screening to work we need to know the maximum angular |
632
|
|
|
|
|
|
|
# distance we can travel in 30 seconds. This is the arc tangent |
633
|
|
|
|
|
|
|
# of the velocity over the range |
634
|
|
|
|
|
|
|
|
635
|
4
|
|
|
|
|
135
|
my (undef, undef, undef, $xdot, $ydot, $zdot) = $self->eci (); |
636
|
4
|
|
|
|
|
73
|
my $max_angle = atan2 ( |
637
|
|
|
|
|
|
|
sqrt ($xdot * $xdot + $ydot * $ydot + $zdot * $zdot), $rng) |
638
|
|
|
|
|
|
|
* 30; |
639
|
4
|
|
|
|
|
8
|
$max_angle += $max_mirror_angle; # Take into account near misses. |
640
|
|
|
|
|
|
|
|
641
|
|
|
|
|
|
|
# Iterate over a period of 16 minutes centered on our current |
642
|
|
|
|
|
|
|
# time, calculating the location of the reflection of the sun |
643
|
|
|
|
|
|
|
# versus the satellite, as seen by the observer. |
644
|
|
|
|
|
|
|
|
645
|
4
|
|
|
|
|
8
|
my @flare_potential = ([], [], []); # Flare-potential data by MMA. |
646
|
4
|
|
|
|
|
9
|
foreach my $deltat (-8 .. 8) { |
647
|
68
|
|
|
|
|
219
|
my $time = $deltat * 60 + $time; |
648
|
|
|
|
|
|
|
|
649
|
|
|
|
|
|
|
# See if the satellite is illuminated at this time. |
650
|
|
|
|
|
|
|
# TODO This code may need some slop; specifically we might want to |
651
|
|
|
|
|
|
|
# assume the Sun is higher than it actually is by $max_angle. |
652
|
|
|
|
|
|
|
|
653
|
68
|
100
|
|
|
|
146
|
($self->universal ($time)->azel ($illum->universal ($time)))[1] >= |
654
|
|
|
|
|
|
|
$self->dip () or next; |
655
|
|
|
|
|
|
|
|
656
|
|
|
|
|
|
|
# Transform the relevant coordinates into a coordinate system |
657
|
|
|
|
|
|
|
# in which the axis of the satellite is along the Z axis (with |
658
|
|
|
|
|
|
|
# the Earth in the negative Z direction) and the direction of |
659
|
|
|
|
|
|
|
# motion (and hence one of the Main Mission Antennae) is along |
660
|
|
|
|
|
|
|
# the X axis. The method returns Math::VectorReal objects |
661
|
|
|
|
|
|
|
# corresponding to all inputs, including '$self'. |
662
|
|
|
|
|
|
|
|
663
|
64
|
|
|
|
|
1898
|
my ( $illum_vector, $station_vector ) = |
664
|
|
|
|
|
|
|
$self->_flare_transform_coords_list ( |
665
|
|
|
|
|
|
|
$illum, $station->universal( $time ) ); |
666
|
|
|
|
|
|
|
|
667
|
|
|
|
|
|
|
# Now we do a second iteration over the Main Mission Antennae, |
668
|
|
|
|
|
|
|
# checking for the position of the Sun's reflection. |
669
|
|
|
|
|
|
|
|
670
|
64
|
|
|
|
|
105
|
foreach my $mma (0 .. 2) { |
671
|
|
|
|
|
|
|
|
672
|
|
|
|
|
|
|
# We clone the sun and the station, and then calculate the angle |
673
|
|
|
|
|
|
|
# between the satellite and the reflection of the Sun, as seen by |
674
|
|
|
|
|
|
|
# the observer. We skip to the next antenna if no reflection is |
675
|
|
|
|
|
|
|
# generated. |
676
|
|
|
|
|
|
|
|
677
|
192
|
|
|
|
|
281
|
my $illum_vector = [@$illum_vector]; |
678
|
192
|
|
|
|
|
261
|
my $station_vector = [@$station_vector]; |
679
|
|
|
|
|
|
|
next unless defined ( |
680
|
192
|
100
|
|
|
|
249
|
my $angle = _flare_calculate_angle_list( |
681
|
|
|
|
|
|
|
$mma, $illum_vector, $station_vector ) ); |
682
|
|
|
|
|
|
|
|
683
|
|
|
|
|
|
|
# Save the angle, time, and cloned station for subsequent |
684
|
|
|
|
|
|
|
# analysis. |
685
|
|
|
|
|
|
|
|
686
|
64
|
|
|
|
|
413
|
push @{$flare_potential[$mma]}, |
|
64
|
|
|
|
|
173
|
|
687
|
|
|
|
|
|
|
[$angle, $time, $illum_vector, $station_vector]; |
688
|
|
|
|
|
|
|
|
689
|
|
|
|
|
|
|
# End of iterating over Main Mission Antennae. |
690
|
|
|
|
|
|
|
|
691
|
|
|
|
|
|
|
} |
692
|
|
|
|
|
|
|
|
693
|
|
|
|
|
|
|
# End of iterating over 16 minute period centered on current |
694
|
|
|
|
|
|
|
# time. |
695
|
|
|
|
|
|
|
|
696
|
|
|
|
|
|
|
} |
697
|
|
|
|
|
|
|
|
698
|
|
|
|
|
|
|
# Now iterate over each MMA to calculate its flare, if any. |
699
|
|
|
|
|
|
|
|
700
|
|
|
|
|
|
|
MMA_LOOP: |
701
|
4
|
|
|
|
|
14
|
foreach my $mma (0 .. 2) { |
702
|
|
|
|
|
|
|
|
703
|
|
|
|
|
|
|
# Find the best possibility for a flare. If none, or the angle is |
704
|
|
|
|
|
|
|
# more than the max possible, ignore this antenna. |
705
|
|
|
|
|
|
|
|
706
|
12
|
100
|
|
|
|
18
|
next if @{$flare_potential[$mma]} < 2; |
|
12
|
|
|
|
|
72
|
|
707
|
8
|
|
|
|
|
10
|
my @flare_approx; |
708
|
8
|
|
|
|
|
10
|
do { # Begin local symbol block |
709
|
8
|
|
|
|
|
13
|
my $inx = 0; |
710
|
8
|
|
|
|
|
12
|
my $angle = $flare_potential[$mma][$inx][0]; |
711
|
8
|
|
|
|
|
11
|
foreach (1 .. @{$flare_potential[$mma]} - 1) { |
|
8
|
|
|
|
|
15
|
|
712
|
56
|
100
|
|
|
|
88
|
next unless $flare_potential[$mma][$_][0] < $angle; |
713
|
10
|
|
|
|
|
23
|
$inx = $_; |
714
|
10
|
|
|
|
|
15
|
$angle = $flare_potential[$mma][$_][0]; |
715
|
|
|
|
|
|
|
} |
716
|
8
|
100
|
|
|
|
19
|
next if $angle > $max_angle; |
717
|
|
|
|
|
|
|
|
718
|
|
|
|
|
|
|
# If the best potential is at the beginning or end of the list, |
719
|
|
|
|
|
|
|
# calculate the entrance (or exit) of the flare so we have a |
720
|
|
|
|
|
|
|
# starting point for out approximations. Note that we used to |
721
|
|
|
|
|
|
|
# just abandon the calculation in these cases. |
722
|
|
|
|
|
|
|
|
723
|
6
|
50
|
|
|
|
15
|
if ($inx == 0) { |
|
|
100
|
|
|
|
|
|
724
|
0
|
|
|
|
|
0
|
unshift @{$flare_potential[$mma]}, |
|
0
|
|
|
|
|
0
|
|
725
|
|
|
|
|
|
|
$self->_flare_entrance ($illum, $station, $mma, |
726
|
|
|
|
|
|
|
$flare_potential[$mma][$inx][1] - 60, |
727
|
|
|
|
|
|
|
$flare_potential[$mma][$inx][1]); |
728
|
0
|
|
|
|
|
0
|
$inx++; |
729
|
6
|
|
|
|
|
14
|
} elsif ($inx == @{$flare_potential[$mma]} - 1) { |
730
|
2
|
|
|
|
|
3
|
push @{$flare_potential[$mma]}, |
|
2
|
|
|
|
|
9
|
|
731
|
|
|
|
|
|
|
$self->_flare_entrance ($illum, $station, $mma, |
732
|
|
|
|
|
|
|
$flare_potential[$mma][$inx][1] + 60, |
733
|
|
|
|
|
|
|
$flare_potential[$mma][$inx][1]); |
734
|
|
|
|
|
|
|
} |
735
|
6
|
|
|
|
|
20
|
@flare_approx = ($flare_potential[$mma][$inx - 1], |
736
|
|
|
|
|
|
|
$flare_potential[$mma][$inx + 1]); |
737
|
|
|
|
|
|
|
}; # End local symbol block; |
738
|
|
|
|
|
|
|
|
739
|
|
|
|
|
|
|
# Use successive approximation to find the time of minimum |
740
|
|
|
|
|
|
|
# angle. We can not use a linear split-the-difference search, |
741
|
|
|
|
|
|
|
# because the behavior is too far from linear. So we fudge by |
742
|
|
|
|
|
|
|
# taking the second- and third-closest angles found, and working |
743
|
|
|
|
|
|
|
# inward from them. We also use a weighted average of the two |
744
|
|
|
|
|
|
|
# previously-used times to prevent converging so fast we jump |
745
|
|
|
|
|
|
|
# over the point we are trying to find. |
746
|
|
|
|
|
|
|
|
747
|
6
|
|
|
|
|
18
|
while (abs ($flare_approx[1][1] - $flare_approx[0][1]) > .1) { |
748
|
|
|
|
|
|
|
|
749
|
|
|
|
|
|
|
# Calculate the next time to try as a weighted average of the |
750
|
|
|
|
|
|
|
# previous two approximations, with the worse approximation |
751
|
|
|
|
|
|
|
# having three times the weight of the better one. This prevents |
752
|
|
|
|
|
|
|
# us from converging so fast we miss the true minimum. Yes, this |
753
|
|
|
|
|
|
|
# is ad-hocery. I tried weighting the 'wrong' flare twice as |
754
|
|
|
|
|
|
|
# much, but still missed the maximum sometimes. This was more |
755
|
|
|
|
|
|
|
# obvious on daytime flares, where if you miss the peak the |
756
|
|
|
|
|
|
|
# flare is probably not specular. |
757
|
|
|
|
|
|
|
|
758
|
|
|
|
|
|
|
## my $time = ($flare_approx[1][1] * 2 + $flare_approx[0][1]) / 3; |
759
|
148
|
|
|
|
|
241
|
my $time = ($flare_approx[1][1] * 3 + $flare_approx[0][1]) / 4; |
760
|
|
|
|
|
|
|
#### my $time = ($flare_approx[1][1] * 6 + $flare_approx[0][1]) / 7; |
761
|
|
|
|
|
|
|
|
762
|
|
|
|
|
|
|
# Transform the relevant coordinates into a coordinate system |
763
|
|
|
|
|
|
|
# in which the axis of the satellite is along the Z axis (with |
764
|
|
|
|
|
|
|
# the Earth in the negative Z direction) and the direction of |
765
|
|
|
|
|
|
|
# motion (and hence one of the Main Mission Antennae) is along |
766
|
|
|
|
|
|
|
# the X axis. |
767
|
|
|
|
|
|
|
|
768
|
148
|
|
|
|
|
327
|
my ( $illum_vector, $station_vector ) = |
769
|
|
|
|
|
|
|
$self->universal( $time )-> |
770
|
|
|
|
|
|
|
_flare_transform_coords_list( |
771
|
|
|
|
|
|
|
$illum->universal( $time ), |
772
|
|
|
|
|
|
|
$station->universal( $time ) ); |
773
|
|
|
|
|
|
|
|
774
|
|
|
|
|
|
|
# Calculate the angle between the satellite and the reflection |
775
|
|
|
|
|
|
|
# of the Sun, as seen by the observer. |
776
|
|
|
|
|
|
|
|
777
|
148
|
|
|
|
|
250
|
my $angle = _flare_calculate_angle_list( |
778
|
|
|
|
|
|
|
$mma, $illum_vector, $station_vector ); |
779
|
148
|
50
|
|
|
|
890
|
defined $angle or next MMA_LOOP; |
780
|
|
|
|
|
|
|
|
781
|
|
|
|
|
|
|
# Store the data in our approximation list, in order by angle. |
782
|
|
|
|
|
|
|
|
783
|
148
|
|
|
|
|
194
|
pop @flare_approx; |
784
|
148
|
|
|
|
|
541
|
splice @flare_approx, $angle >= $flare_approx[0][0], 0, |
785
|
|
|
|
|
|
|
[$angle, $time, $illum_vector, $station_vector]; |
786
|
|
|
|
|
|
|
|
787
|
|
|
|
|
|
|
# End of successive approximation of time of minimum angle. |
788
|
|
|
|
|
|
|
|
789
|
|
|
|
|
|
|
} |
790
|
|
|
|
|
|
|
|
791
|
|
|
|
|
|
|
# Pull the (potential) flare data off the approximation list. |
792
|
|
|
|
|
|
|
|
793
|
|
|
|
|
|
|
my ($angle, $time, $illum_vector, $station_vector) = |
794
|
6
|
|
|
|
|
13
|
@{$flare_approx[0]}; |
|
6
|
|
|
|
|
12
|
|
795
|
|
|
|
|
|
|
|
796
|
|
|
|
|
|
|
# Skip it if the mirror angle is greater than the max. |
797
|
|
|
|
|
|
|
|
798
|
6
|
100
|
|
|
|
21
|
next if $angle > $max_mirror_angle; |
799
|
|
|
|
|
|
|
|
800
|
|
|
|
|
|
|
# All our approximations may have left us with a satellite which |
801
|
|
|
|
|
|
|
# is not quite lit. This happened with Iridium 32 (OID 24945) on |
802
|
|
|
|
|
|
|
# Feb 03 2007 at 07:45:19 PM. So we check for illumination one |
803
|
|
|
|
|
|
|
# last time. |
804
|
|
|
|
|
|
|
# TODO: this calculation should be performed not on the position |
805
|
|
|
|
|
|
|
# of the Sun, but on the actual point on the Sun which is |
806
|
|
|
|
|
|
|
# reflected to the observer. It looks now like it needs to be done |
807
|
|
|
|
|
|
|
# in _flare_calculate_angle_list(). |
808
|
|
|
|
|
|
|
|
809
|
4
|
50
|
|
|
|
17
|
($self->universal ($time)->azel ($illum->universal ($time)))[1] >= |
810
|
|
|
|
|
|
|
$self->dip () or next; |
811
|
|
|
|
|
|
|
|
812
|
|
|
|
|
|
|
# Calculate all the flare data. |
813
|
|
|
|
|
|
|
|
814
|
4
|
|
|
|
|
133
|
my $flare = $self->_flare_char_list ($station, $mma, $angle, |
815
|
|
|
|
|
|
|
$time, $illum_vector, $station_vector); |
816
|
|
|
|
|
|
|
|
817
|
|
|
|
|
|
|
# Stash the data. |
818
|
|
|
|
|
|
|
|
819
|
|
|
|
|
|
|
push @flares, $flare |
820
|
4
|
50
|
33
|
|
|
33
|
if !$flare->{status} && $want{$flare->{type}}; |
821
|
|
|
|
|
|
|
|
822
|
|
|
|
|
|
|
# End of iteration over each MMA to calculate its flare. |
823
|
|
|
|
|
|
|
|
824
|
|
|
|
|
|
|
} |
825
|
|
|
|
|
|
|
|
826
|
|
|
|
|
|
|
# Compute the next approxiate crossing of the observer's |
827
|
|
|
|
|
|
|
# latitude. |
828
|
|
|
|
|
|
|
|
829
|
|
|
|
|
|
|
} continue { |
830
|
66
|
|
|
|
|
96
|
$time += $deltas[$asc]; |
831
|
66
|
|
|
|
|
129
|
$asc = 1 - $asc; |
832
|
|
|
|
|
|
|
} |
833
|
|
|
|
|
|
|
|
834
|
2
|
|
|
|
|
30
|
return @flares; |
835
|
|
|
|
|
|
|
|
836
|
|
|
|
|
|
|
} |
837
|
|
|
|
|
|
|
|
838
|
|
|
|
|
|
|
# [$angle, $time, $illum_vector, $station_vector] = |
839
|
|
|
|
|
|
|
# $self->_flare_entrance ($illum, $station, $mma, $start, |
840
|
|
|
|
|
|
|
# $end); |
841
|
|
|
|
|
|
|
|
842
|
|
|
|
|
|
|
# Given that a flare is in progress at the end time and not at |
843
|
|
|
|
|
|
|
# the start time, computes the start of the flare. Can be used |
844
|
|
|
|
|
|
|
# for exit by reversing the times. |
845
|
|
|
|
|
|
|
|
846
|
|
|
|
|
|
|
sub _flare_entrance { |
847
|
2
|
|
|
2
|
|
5
|
my ($self, $illum, $station, $mma, $start, $end) = @_; |
848
|
2
|
|
|
|
|
4
|
my $output; |
849
|
|
|
|
|
|
|
# my $time = find_first_true ( |
850
|
|
|
|
|
|
|
find_first_true ( |
851
|
|
|
|
|
|
|
$start, $end, |
852
|
|
|
|
|
|
|
sub { |
853
|
12
|
|
|
12
|
|
147
|
$self->universal ($_[0]); |
854
|
12
|
|
|
|
|
2209
|
my ( $illum_vector, $station_vector ) = |
855
|
|
|
|
|
|
|
$self->_flare_transform_coords_list( |
856
|
|
|
|
|
|
|
$illum->universal( $_[0] ), |
857
|
|
|
|
|
|
|
$station->universal( $_[0] ) ); |
858
|
12
|
100
|
|
|
|
24
|
if ( defined ( my $angle = _flare_calculate_angle_list( |
859
|
|
|
|
|
|
|
$mma, $illum_vector, $station_vector ) ) ) { |
860
|
6
|
|
|
|
|
82
|
$output = [$angle, $_[0], $illum_vector, $station_vector]; |
861
|
6
|
|
|
|
|
13
|
1; |
862
|
|
|
|
|
|
|
} else { |
863
|
6
|
|
|
|
|
12
|
0; |
864
|
|
|
|
|
|
|
} |
865
|
2
|
|
|
|
|
15
|
}); |
866
|
2
|
|
0
|
|
|
22
|
$output ||= do { # Can happen if end is entrance. |
|
|
|
33
|
|
|
|
|
867
|
|
|
|
|
|
|
$self->universal ($end); |
868
|
|
|
|
|
|
|
my ( $illum_vector, $station_vector ) = |
869
|
|
|
|
|
|
|
$self->_flare_transform_coords_list( |
870
|
|
|
|
|
|
|
$illum->universal( $end ), |
871
|
|
|
|
|
|
|
$station->universal( $end) ); |
872
|
|
|
|
|
|
|
my $angle = _flare_calculate_angle_list( |
873
|
|
|
|
|
|
|
$mma, $illum_vector, $station_vector ); |
874
|
|
|
|
|
|
|
defined $angle ? |
875
|
|
|
|
|
|
|
[$angle, $end, $illum_vector, $station_vector] : |
876
|
|
|
|
|
|
|
undef; |
877
|
|
|
|
|
|
|
} || confess <
|
878
|
|
|
|
|
|
|
Programming error - No entrance found by _flare_entrance. |
879
|
|
|
|
|
|
|
@{[join ' - ', grep {$_} map {$self->get ($_)} qw{name id}]} |
880
|
|
|
|
|
|
|
\$mma = $mma |
881
|
|
|
|
|
|
|
\$start = $start = @{[scalar localtime $start]} |
882
|
|
|
|
|
|
|
\$end = $end = @{[scalar localtime $end]} |
883
|
|
|
|
|
|
|
eod |
884
|
2
|
|
|
|
|
4
|
return $output; |
885
|
|
|
|
|
|
|
} |
886
|
|
|
|
|
|
|
|
887
|
|
|
|
|
|
|
# @vectors = $tle->_flare_transform_coords_list( $eci ....) |
888
|
|
|
|
|
|
|
# |
889
|
|
|
|
|
|
|
# This private method transforms the coordinates of the $tle |
890
|
|
|
|
|
|
|
# object and all $eci objects passed in, so that the $tle |
891
|
|
|
|
|
|
|
# object is at the origin of a coordinate system whose |
892
|
|
|
|
|
|
|
# X axis is along the velocity vector of the $tle object, the |
893
|
|
|
|
|
|
|
# Y axis is perpendicular to the plane of the orbit, and the |
894
|
|
|
|
|
|
|
# Z axis is perpendicular to both of these, and therefore |
895
|
|
|
|
|
|
|
# nominally "up and down", with the center of the Earth in the |
896
|
|
|
|
|
|
|
# - Z direction. The objects are not modified, instead |
897
|
|
|
|
|
|
|
# list references (containing the position vectors) |
898
|
|
|
|
|
|
|
# corresponding to all arguments (except the invocant) are |
899
|
|
|
|
|
|
|
# returned. |
900
|
|
|
|
|
|
|
|
901
|
|
|
|
|
|
|
sub _flare_transform_coords_list { |
902
|
228
|
|
|
228
|
|
65315
|
my ( $self, @args ) = @_; |
903
|
228
|
|
|
|
|
344
|
my @ref = $self->eci(); |
904
|
228
|
|
|
|
|
4242
|
my $X = vector_unitize( [@ref[3 .. 5]] ); |
905
|
228
|
|
|
|
|
4840
|
my $Y = vector_cross_product( vector_unitize( [ @ref[0 .. 2]] ), $X ); |
906
|
228
|
|
|
|
|
5454
|
my $Z = vector_cross_product( $X, $Y ); |
907
|
228
|
|
|
|
|
1481
|
my @coord = ($X, $Y, $Z); |
908
|
228
|
|
|
|
|
265
|
my @rslt; |
909
|
228
|
|
|
|
|
288
|
foreach my $loc (@args) { |
910
|
456
|
|
|
|
|
3404
|
my @eci = $loc->eci(); |
911
|
456
|
|
|
|
|
24443
|
my @pos = map { $eci[$_] - $ref[$_] } 0 .. 2; |
|
1368
|
|
|
|
|
2201
|
|
912
|
|
|
|
|
|
|
push @rslt, [ |
913
|
456
|
|
|
|
|
607
|
map { vector_dot_product( \@pos, $coord[$_] ) } 0 .. 2 |
|
1368
|
|
|
|
|
12149
|
|
914
|
|
|
|
|
|
|
]; |
915
|
|
|
|
|
|
|
} |
916
|
228
|
|
|
|
|
3261
|
return @rslt; |
917
|
|
|
|
|
|
|
} |
918
|
|
|
|
|
|
|
|
919
|
|
|
|
|
|
|
# @original = $tle->_flare_transform_coords_inverse_list( @vectors ) |
920
|
|
|
|
|
|
|
# |
921
|
|
|
|
|
|
|
# This private method is the inverse (almost) of |
922
|
|
|
|
|
|
|
# _flare_transform_coords_list(). The weasel word is because it |
923
|
|
|
|
|
|
|
# returns array references representing the ECI position vectors, |
924
|
|
|
|
|
|
|
# rather than Astro::Coord::ECI objects. |
925
|
|
|
|
|
|
|
|
926
|
|
|
|
|
|
|
sub _flare_transform_coords_inverse_list { |
927
|
8
|
|
|
8
|
|
16
|
my ( $self, @args ) = @_; |
928
|
8
|
|
|
|
|
14
|
my @ref = $self->eci(); |
929
|
8
|
|
|
|
|
158
|
my $X = vector_unitize( [@ref[3 .. 5]] ); |
930
|
8
|
|
|
|
|
166
|
my $Y = vector_cross_product( vector_unitize( [ @ref[0 .. 2]] ), $X ); |
931
|
8
|
|
|
|
|
210
|
my $Z = vector_cross_product( $X, $Y ); |
932
|
8
|
|
|
|
|
67
|
my @coord = _invert_matrix_list($X, $Y, $Z); |
933
|
8
|
|
|
|
|
12
|
my @rslt; |
934
|
8
|
|
|
|
|
15
|
foreach my $loc (@args) { |
935
|
|
|
|
|
|
|
push @rslt, [ |
936
|
8
|
|
|
|
|
17
|
map { vector_dot_product( $loc, $coord[$_] ) + $ref[$_] } 0 .. 2 |
|
24
|
|
|
|
|
215
|
|
937
|
|
|
|
|
|
|
]; |
938
|
|
|
|
|
|
|
} |
939
|
8
|
|
|
|
|
118
|
return @rslt; |
940
|
|
|
|
|
|
|
} |
941
|
|
|
|
|
|
|
|
942
|
|
|
|
|
|
|
# $angle = _flare_calculate_angle_list($mma, $illum, $station) |
943
|
|
|
|
|
|
|
|
944
|
|
|
|
|
|
|
# This private subroutine calculates the angle between the |
945
|
|
|
|
|
|
|
# satellite and the reflection of the Sun in the given Main |
946
|
|
|
|
|
|
|
# Mission Antenna as seen from the observing station. $illum and |
947
|
|
|
|
|
|
|
# $station are list reverences generated by |
948
|
|
|
|
|
|
|
# _flare_transform_coords_list(). The satellite position is not |
949
|
|
|
|
|
|
|
# needed because in this coordinate system it is [0, 0, 0] |
950
|
|
|
|
|
|
|
|
951
|
|
|
|
|
|
|
# A reflection can only occur if both the Sun and the observer |
952
|
|
|
|
|
|
|
# are in front of the antenna (i.e. have positive Z coordinates |
953
|
|
|
|
|
|
|
# after transforming everything so that the plane of the MMA is |
954
|
|
|
|
|
|
|
# the X-Y axis). If there is no reflection, undef is returned. |
955
|
|
|
|
|
|
|
|
956
|
|
|
|
|
|
|
sub _flare_calculate_angle_list { |
957
|
364
|
|
|
364
|
|
484
|
my ( $mma, $illum, $station ) = @_; |
958
|
|
|
|
|
|
|
|
959
|
|
|
|
|
|
|
# Rotate the objects so that the Main Mission Antenna of interest |
960
|
|
|
|
|
|
|
# lies in the X-Y plane, facing in the +Z direction. |
961
|
|
|
|
|
|
|
|
962
|
364
|
|
|
|
|
388
|
my @eci; |
963
|
364
|
|
|
|
|
466
|
foreach my $inx (0 .. 2) { |
964
|
1092
|
|
|
|
|
9347
|
$eci[$inx] = vector_dot_product ($illum, $transform_vector[$mma][$inx]) |
965
|
|
|
|
|
|
|
} |
966
|
364
|
100
|
|
|
|
4684
|
return unless $eci[2] > 0; |
967
|
274
|
|
|
|
|
317
|
$eci[2] = - $eci[2]; |
968
|
274
|
|
|
|
|
394
|
$illum = [$eci[0], $eci[1], $eci[2]]; |
969
|
274
|
|
|
|
|
349
|
foreach my $inx (0 .. 2) { |
970
|
822
|
|
|
|
|
6908
|
$eci[$inx] = vector_dot_product ($station, $transform_vector[$mma][$inx]) |
971
|
|
|
|
|
|
|
} |
972
|
274
|
100
|
|
|
|
3435
|
return unless $eci[2] > 0; |
973
|
222
|
|
|
|
|
344
|
$station = [$eci[0], $eci[1], $eci[2]]; |
974
|
|
|
|
|
|
|
|
975
|
|
|
|
|
|
|
# Now calculate the angle between the illumination source and the |
976
|
|
|
|
|
|
|
# observer as seen by the observer. |
977
|
|
|
|
|
|
|
|
978
|
222
|
|
|
|
|
402
|
return _list_angle( $station, $illum, [ 0, 0, 0 ] ); |
979
|
|
|
|
|
|
|
} |
980
|
|
|
|
|
|
|
|
981
|
|
|
|
|
|
|
# $hash_ref = $iridium->_flare_char_list (...) |
982
|
|
|
|
|
|
|
# |
983
|
|
|
|
|
|
|
# Calculate the characteristics of the flare of the given body. |
984
|
|
|
|
|
|
|
# The arguments are as follows: |
985
|
|
|
|
|
|
|
# |
986
|
|
|
|
|
|
|
# $station => the object representing the observer. |
987
|
|
|
|
|
|
|
# $mma => the flaring Main Mission Antenna (0 .. 2). |
988
|
|
|
|
|
|
|
# $angle => the previously-calculated mirror angle. |
989
|
|
|
|
|
|
|
# $time => the time of the flare. |
990
|
|
|
|
|
|
|
# $illum_vector => the previously-calculated vector to the |
991
|
|
|
|
|
|
|
# illuminating body (satellite = [0, 0, 0]). |
992
|
|
|
|
|
|
|
# $station_vector => the previously-calculated vector to the |
993
|
|
|
|
|
|
|
# observer (satellite = [0, 0, 0]) |
994
|
|
|
|
|
|
|
|
995
|
|
|
|
|
|
|
sub _flare_char_list { |
996
|
|
|
|
|
|
|
|
997
|
8
|
|
|
8
|
|
22
|
my ($self, $station, $mma, $angle, $time, $illum_vector, $station_vector) = @_; |
998
|
|
|
|
|
|
|
|
999
|
|
|
|
|
|
|
# Skip it if the flare is not above the horizon. |
1000
|
|
|
|
|
|
|
|
1001
|
8
|
|
|
|
|
17
|
my ($azim, $elev) = $station->azel ($self->universal ($time)); |
1002
|
8
|
|
|
|
|
533
|
my $horizon = $self->get ('horizon'); |
1003
|
8
|
50
|
|
|
|
146
|
if ($elev < $horizon) { |
1004
|
0
|
|
|
|
|
0
|
return _make_status (sprintf ( |
1005
|
|
|
|
|
|
|
'Satellite %.2f degrees below horizon', rad2deg ($horizon - $elev))); |
1006
|
|
|
|
|
|
|
} |
1007
|
|
|
|
|
|
|
|
1008
|
|
|
|
|
|
|
# Retrieve the illuminating body information. |
1009
|
|
|
|
|
|
|
|
1010
|
8
|
|
|
|
|
16
|
my $illum = $self->get ('illum'); |
1011
|
8
|
|
|
|
|
66
|
my $illum_radius = $illum->get ('diameter') / 2; |
1012
|
|
|
|
|
|
|
|
1013
|
|
|
|
|
|
|
# Retrieve missing station information. |
1014
|
|
|
|
|
|
|
|
1015
|
8
|
|
|
|
|
162
|
my $height = ($station->geodetic)[2]; |
1016
|
|
|
|
|
|
|
|
1017
|
|
|
|
|
|
|
# And any odds and ends we might need. |
1018
|
|
|
|
|
|
|
|
1019
|
8
|
|
|
|
|
161
|
my $sun = $self->get( 'sun' ); |
1020
|
8
|
|
|
|
|
140
|
my $twilight = $self->get ('twilight'); |
1021
|
8
|
|
|
|
|
108
|
my $atm_extinct = $self->get ('extinction'); |
1022
|
|
|
|
|
|
|
|
1023
|
|
|
|
|
|
|
# Calculate the range to the satellite, and to the reflection of |
1024
|
|
|
|
|
|
|
# the Sun, from the observer. |
1025
|
|
|
|
|
|
|
|
1026
|
8
|
|
|
|
|
17
|
my $sat_range = vector_magnitude ($station_vector); |
1027
|
8
|
|
|
|
|
107
|
my $illum_range = vector_magnitude ([ |
1028
|
|
|
|
|
|
|
$illum_vector->[0] - $station_vector->[0], |
1029
|
|
|
|
|
|
|
$illum_vector->[1] - $station_vector->[1], |
1030
|
|
|
|
|
|
|
$illum_vector->[2] - $station_vector->[2], |
1031
|
|
|
|
|
|
|
]); |
1032
|
|
|
|
|
|
|
|
1033
|
|
|
|
|
|
|
# Calculate the projected area of the MMA of interest, in square |
1034
|
|
|
|
|
|
|
# radians. |
1035
|
|
|
|
|
|
|
|
1036
|
8
|
|
|
|
|
100
|
my $sat_area = abs ($station_vector->[2]) / $sat_range * MMAAREA |
1037
|
|
|
|
|
|
|
/ 1e6 / ($sat_range * $sat_range); |
1038
|
|
|
|
|
|
|
|
1039
|
|
|
|
|
|
|
# As a side effect, we calculate omega, the angle from the center |
1040
|
|
|
|
|
|
|
# of the Sun to the edge, as seen by the observer. |
1041
|
|
|
|
|
|
|
|
1042
|
8
|
|
|
|
|
11
|
my $illum_omega = $illum_radius / $illum_range; |
1043
|
8
|
|
|
|
|
11
|
my $illum_area = PI * $illum_omega * $illum_omega; |
1044
|
|
|
|
|
|
|
|
1045
|
|
|
|
|
|
|
# Calculate the magnitude of the illuminating body at the point |
1046
|
|
|
|
|
|
|
# reflected by the Main Mission Antenna. |
1047
|
|
|
|
|
|
|
|
1048
|
8
|
|
|
|
|
23
|
my ($point_magnitude, $limb_darkening, $central_magnitude) = |
1049
|
|
|
|
|
|
|
$illum->magnitude ($angle, $illum_omega); |
1050
|
|
|
|
|
|
|
|
1051
|
|
|
|
|
|
|
# Calculate the reduction in magnitude due to the fact that the |
1052
|
|
|
|
|
|
|
# projected area of the main mission antenna is smaller than the |
1053
|
|
|
|
|
|
|
# projected area of the Sun. |
1054
|
|
|
|
|
|
|
|
1055
|
8
|
|
|
|
|
300
|
my $area_correction = |
1056
|
|
|
|
|
|
|
intensity_to_magnitude ($sat_area / $illum_area); |
1057
|
|
|
|
|
|
|
|
1058
|
|
|
|
|
|
|
# Calculate the dead-center flare magnitude as the central |
1059
|
|
|
|
|
|
|
# magnitude of the Sun plus the delta caused by the fact that the |
1060
|
|
|
|
|
|
|
# projected area of the main mission antenna is smaller than the |
1061
|
|
|
|
|
|
|
# area of the sun. |
1062
|
|
|
|
|
|
|
|
1063
|
8
|
|
|
|
|
38
|
my $central_mag = $central_magnitude + $area_correction; |
1064
|
|
|
|
|
|
|
|
1065
|
|
|
|
|
|
|
# And for the test case, I got -8.0. Amazing. |
1066
|
|
|
|
|
|
|
|
1067
|
|
|
|
|
|
|
# Calculate the atmospheric extinction of the flare. |
1068
|
|
|
|
|
|
|
|
1069
|
8
|
50
|
|
|
|
29
|
my $extinction = $atm_extinct ? |
1070
|
|
|
|
|
|
|
atmospheric_extinction ($elev, $height) : 0; |
1071
|
|
|
|
|
|
|
|
1072
|
|
|
|
|
|
|
# The following off-axis magnitude calculation is the result of |
1073
|
|
|
|
|
|
|
# normalizing Ron Lee's magnitude data (made available by Randy |
1074
|
|
|
|
|
|
|
# John in various forms at http://home.comcast.net/~skysat/ ) for |
1075
|
|
|
|
|
|
|
# a projected Main Mission Antenna area of 1e-12 square radians |
1076
|
|
|
|
|
|
|
# and zero atmospheric extinction. A logarithmic correlation was |
1077
|
|
|
|
|
|
|
# suggested by Rob Matson (author of IRIDFLAR) at |
1078
|
|
|
|
|
|
|
# http://www.satobs.org/seesat/Apr-1998/0175.html . I tried a |
1079
|
|
|
|
|
|
|
# couple other possibilities, but ended up most satisfied (or |
1080
|
|
|
|
|
|
|
# least unsatisfied) with a linear regression on |
1081
|
|
|
|
|
|
|
# ln (8 - magnitude), with the 8 picked because it was the |
1082
|
|
|
|
|
|
|
# maximum possible magnitude. |
1083
|
|
|
|
|
|
|
# Maybe I could have done better with a larger arbitrary |
1084
|
|
|
|
|
|
|
# constant, since the data sags a bit in the middle versus the |
1085
|
|
|
|
|
|
|
# regression line, but there is a fair amount of scatter anyway. |
1086
|
|
|
|
|
|
|
|
1087
|
|
|
|
|
|
|
# All this means that the calculation is |
1088
|
|
|
|
|
|
|
# mag = 8 - exp (-5.1306 * angle_in_radians + 2.4128) + |
1089
|
|
|
|
|
|
|
# intensity_to_magnitude (area / 1e-12) + |
1090
|
|
|
|
|
|
|
# atmospheric_refraction (elevation, height) |
1091
|
|
|
|
|
|
|
# The R-squared for this is .563. |
1092
|
|
|
|
|
|
|
|
1093
|
|
|
|
|
|
|
# There are several possible sources of error: |
1094
|
|
|
|
|
|
|
|
1095
|
|
|
|
|
|
|
# * My mirror angle is defined slightly different than Randy |
1096
|
|
|
|
|
|
|
# John's. Mine is the angle between the satellite and the |
1097
|
|
|
|
|
|
|
# virtual image of the Sun as seen by the observer. His is the |
1098
|
|
|
|
|
|
|
# angle between the actual reflection and a central specular |
1099
|
|
|
|
|
|
|
# reflection, which I take to be 180 degrees minus the angle |
1100
|
|
|
|
|
|
|
# between the Sun and the observer as seen from the satellite. |
1101
|
|
|
|
|
|
|
# This makes my angle slightly smaller than his, the difference |
1102
|
|
|
|
|
|
|
# being the angle between the observer and the satellite as |
1103
|
|
|
|
|
|
|
# seen from the Sun, something on the order of 0.01 degrees or |
1104
|
|
|
|
|
|
|
# less. This is probably not directly a source of error (since |
1105
|
|
|
|
|
|
|
# I used my own calculation of mirror angle), but needs to be |
1106
|
|
|
|
|
|
|
# taken into account when evaluating the other sources of |
1107
|
|
|
|
|
|
|
# error. |
1108
|
|
|
|
|
|
|
|
1109
|
|
|
|
|
|
|
# * My calculated mirror angles are different than Randy John's |
1110
|
|
|
|
|
|
|
# by an amount which is typically about a tenth of a degree, |
1111
|
|
|
|
|
|
|
# but which can be on the order of a couple degrees. Since I |
1112
|
|
|
|
|
|
|
# do not currently have any Wintel hardware, I can not tell |
1113
|
|
|
|
|
|
|
# how much of this is difference in calculation and how much |
1114
|
|
|
|
|
|
|
# is difference in orbital elements. |
1115
|
|
|
|
|
|
|
|
1116
|
|
|
|
|
|
|
# * The error between the visually estimated magnitudes and the |
1117
|
|
|
|
|
|
|
# actual magnitudes is unknown. In theory, visual estimates are |
1118
|
|
|
|
|
|
|
# fairly good given a number of nearby comparison stars of |
1119
|
|
|
|
|
|
|
# magnitudes near the body to be estimated. How the ephemeral |
1120
|
|
|
|
|
|
|
# nature of the flares affects the accuracy of this process is |
1121
|
|
|
|
|
|
|
# not known to me. What happens with magnitudes brighter than |
1122
|
|
|
|
|
|
|
# about -1, where there are no comparison objects available is |
1123
|
|
|
|
|
|
|
# also unknown, as is the actual methodology of making the |
1124
|
|
|
|
|
|
|
# estimates. |
1125
|
|
|
|
|
|
|
|
1126
|
|
|
|
|
|
|
# Note to me: the current estimate was done with |
1127
|
|
|
|
|
|
|
# perl process.pl -quiet -specular -radians -constant 8 |
1128
|
|
|
|
|
|
|
# The previous was done with |
1129
|
|
|
|
|
|
|
# perl process.pl -specular -radians, but the correlation was |
1130
|
|
|
|
|
|
|
# done in a spreadsheet (normalized2.ods) |
1131
|
|
|
|
|
|
|
|
1132
|
3
|
|
|
3
|
|
19
|
use constant OFF_AXIS_FACTOR => -5.1306; # Was -3.9246 |
|
3
|
|
|
|
|
6
|
|
|
3
|
|
|
|
|
151
|
|
1133
|
3
|
|
|
3
|
|
14
|
use constant OFF_AXIS_CONST => 2.4128; # Was 2.60 |
|
3
|
|
|
|
|
5
|
|
|
3
|
|
|
|
|
127
|
|
1134
|
3
|
|
|
3
|
|
13
|
use constant OFF_AXIS_STD_AREA => 1e-12; |
|
3
|
|
|
|
|
5
|
|
|
3
|
|
|
|
|
126
|
|
1135
|
3
|
|
|
3
|
|
15
|
use constant OFF_BASE_MAG => 8; # Was 10 |
|
3
|
|
|
|
|
5
|
|
|
3
|
|
|
|
|
7057
|
|
1136
|
|
|
|
|
|
|
|
1137
|
8
|
|
|
|
|
98
|
my $off_axis_mag = OFF_BASE_MAG - |
1138
|
|
|
|
|
|
|
exp ($angle * OFF_AXIS_FACTOR + OFF_AXIS_CONST) + |
1139
|
|
|
|
|
|
|
intensity_to_magnitude ($sat_area / OFF_AXIS_STD_AREA) + |
1140
|
|
|
|
|
|
|
$extinction; |
1141
|
8
|
50
|
|
|
|
30
|
my $flare_mag = $limb_darkening > 0 ? do { |
1142
|
0
|
|
|
|
|
0
|
my $specular_mag = $point_magnitude + $area_correction + |
1143
|
|
|
|
|
|
|
$extinction; |
1144
|
0
|
|
|
|
|
0
|
min ($specular_mag, $off_axis_mag) } : $off_axis_mag; |
1145
|
|
|
|
|
|
|
|
1146
|
|
|
|
|
|
|
# Compute the flare type (am, day, or pm) |
1147
|
|
|
|
|
|
|
|
1148
|
8
|
|
|
|
|
27
|
my $sun_elev = ($station->azel ($sun->universal ($time)))[1]; |
1149
|
8
|
50
|
|
|
|
1523
|
my $flare_type = $sun_elev >= $twilight ? 'day' : |
|
|
100
|
|
|
|
|
|
1150
|
|
|
|
|
|
|
( $self->_time_in_zone( $time ) )[2] > 12 ? 'pm' : 'am'; |
1151
|
|
|
|
|
|
|
|
1152
|
|
|
|
|
|
|
# Compute the angle from the Sun to the flare. |
1153
|
|
|
|
|
|
|
|
1154
|
8
|
|
|
|
|
25
|
my $sun_angle = $station->angle ($sun, $self); |
1155
|
|
|
|
|
|
|
|
1156
|
|
|
|
|
|
|
# Wikipedia gives the following analytical expression for the |
1157
|
|
|
|
|
|
|
# inversion of a 3 x 3 matrix at |
1158
|
|
|
|
|
|
|
# http://en.wikipedia.org/wiki/Matrix_inversion |
1159
|
|
|
|
|
|
|
# Given |
1160
|
|
|
|
|
|
|
# |
1161
|
|
|
|
|
|
|
# +- -+ |
1162
|
|
|
|
|
|
|
# | a b c | |
1163
|
|
|
|
|
|
|
# A = | d e f | |
1164
|
|
|
|
|
|
|
# | g h i | |
1165
|
|
|
|
|
|
|
# + -+ |
1166
|
|
|
|
|
|
|
# |
1167
|
|
|
|
|
|
|
# the inverse is |
1168
|
|
|
|
|
|
|
# |
1169
|
|
|
|
|
|
|
# +- -+ |
1170
|
|
|
|
|
|
|
# 1 | ei-fh ch-bi bf-ce | |
1171
|
|
|
|
|
|
|
# A'= --- | fg-di ai-cg cd-af | |
1172
|
|
|
|
|
|
|
# |A| | dh-eg bg-ah ae-bd | |
1173
|
|
|
|
|
|
|
# +- -+ |
1174
|
|
|
|
|
|
|
# |
1175
|
|
|
|
|
|
|
# where the determinant |A| = a(ei - fh) - b(di - fg) + c(dh - eg) |
1176
|
|
|
|
|
|
|
# and the matrix is singuar if |A| == 0 |
1177
|
|
|
|
|
|
|
# |
1178
|
|
|
|
|
|
|
# I can then undo the rotations by premultiplying the inverse |
1179
|
|
|
|
|
|
|
# matrices in the reverse order, and add back the location of |
1180
|
|
|
|
|
|
|
# the Iridium satellite to get the location of the virtual image |
1181
|
|
|
|
|
|
|
# in ECI coordinates. |
1182
|
|
|
|
|
|
|
|
1183
|
|
|
|
|
|
|
# Compute the location of the virtual image of the illuminator, |
1184
|
|
|
|
|
|
|
# in ECI coordinates: |
1185
|
|
|
|
|
|
|
|
1186
|
8
|
|
|
|
|
921
|
my ($virtual_image, $image_vector) = do { |
1187
|
|
|
|
|
|
|
|
1188
|
|
|
|
|
|
|
# Recover the position of the virtual image of the illuminator. We |
1189
|
|
|
|
|
|
|
# calculated this before, but never saved it. |
1190
|
|
|
|
|
|
|
|
1191
|
|
|
|
|
|
|
my $image_vector = [ |
1192
|
8
|
|
|
|
|
16
|
map { vector_dot_product( $illum_vector, |
|
24
|
|
|
|
|
220
|
|
1193
|
|
|
|
|
|
|
$transform_vector[$mma][$_] ) } 0 .. 2 |
1194
|
|
|
|
|
|
|
]; |
1195
|
8
|
|
|
|
|
120
|
$image_vector->[2] = - $image_vector->[2]; |
1196
|
|
|
|
|
|
|
|
1197
|
|
|
|
|
|
|
# Undo the rotations that placed the MMA of interest in the X-Y |
1198
|
|
|
|
|
|
|
# plane. |
1199
|
|
|
|
|
|
|
|
1200
|
|
|
|
|
|
|
$image_vector = [ |
1201
|
8
|
|
|
|
|
13
|
map { vector_dot_product( $image_vector, |
|
24
|
|
|
|
|
221
|
|
1202
|
|
|
|
|
|
|
$inverse_transform_vector[$mma][$_] ) } 0 .. 2 |
1203
|
|
|
|
|
|
|
]; |
1204
|
|
|
|
|
|
|
|
1205
|
|
|
|
|
|
|
# Transform from satellite-local coordinates to ECI coordinates. |
1206
|
|
|
|
|
|
|
|
1207
|
8
|
|
|
|
|
113
|
( $image_vector ) = $self->_flare_transform_coords_inverse_list( |
1208
|
|
|
|
|
|
|
$image_vector ); |
1209
|
|
|
|
|
|
|
|
1210
|
|
|
|
|
|
|
# Manufacture an object representing the virtual image, and a vector |
1211
|
|
|
|
|
|
|
# represnting same for use in calculating the flare sub-point. |
1212
|
|
|
|
|
|
|
|
1213
|
8
|
|
|
|
|
20
|
( Astro::Coord::ECI->universal( $time )->eci( @{ $image_vector } ), |
|
8
|
|
|
|
|
616
|
|
1214
|
|
|
|
|
|
|
$image_vector ); |
1215
|
|
|
|
|
|
|
}; |
1216
|
|
|
|
|
|
|
|
1217
|
|
|
|
|
|
|
# Compute the distance to the flare center. |
1218
|
|
|
|
|
|
|
|
1219
|
|
|
|
|
|
|
# For the calculation, consider the Earth flat, and consider the |
1220
|
|
|
|
|
|
|
# center of the flare at the given time to be the point where the |
1221
|
|
|
|
|
|
|
# line from the virtual image of the Sun through the satellite |
1222
|
|
|
|
|
|
|
# intersects the plane. |
1223
|
|
|
|
|
|
|
|
1224
|
|
|
|
|
|
|
# Per http://mathforum.org/library/drmath/view/55094.html |
1225
|
|
|
|
|
|
|
# you can consider the plane defined as a point A (the observer) |
1226
|
|
|
|
|
|
|
# and a normal vector N (toward the zenith), and the line |
1227
|
|
|
|
|
|
|
# to be defined by point P (Iridium) and vector V (= Q - P, with |
1228
|
|
|
|
|
|
|
# Q being the virtual image of the Sun). Then the intersection X |
1229
|
|
|
|
|
|
|
# is given by |
1230
|
|
|
|
|
|
|
# |
1231
|
|
|
|
|
|
|
# (A - P) dot N |
1232
|
|
|
|
|
|
|
# X = P + ------------- (Q - P) |
1233
|
|
|
|
|
|
|
# (Q - P) dot N |
1234
|
|
|
|
|
|
|
# |
1235
|
|
|
|
|
|
|
# I have A (observer), P (Iridium), and Q (virtual image of Sun), |
1236
|
|
|
|
|
|
|
# so all I need is N. This I can get by rotating a unit vector by |
1237
|
|
|
|
|
|
|
# the longitude, then by the geodetic latitude. The distance is |
1238
|
|
|
|
|
|
|
# | X - A |, and the direction is the azimuth of X from A, which |
1239
|
|
|
|
|
|
|
# the azel() method will give me. |
1240
|
|
|
|
|
|
|
# |
1241
|
|
|
|
|
|
|
|
1242
|
8
|
|
|
|
|
260
|
my $sub_vector = do { |
1243
|
8
|
|
|
|
|
20
|
my $a = [($station->eci ())[0 .. 2]]; |
1244
|
8
|
|
|
|
|
314
|
my $p = [($self->eci ())[0 .. 2]]; |
1245
|
8
|
|
|
|
|
140
|
my $q = $image_vector; |
1246
|
8
|
|
|
|
|
18
|
my @n = $station->geodetic (); |
1247
|
8
|
|
|
|
|
149
|
$n[2] += 1; |
1248
|
8
|
|
|
|
|
18
|
my $n = [(Astro::Coord::ECI->geodetic (@n) |
1249
|
|
|
|
|
|
|
->universal ($time)->eci ())[0 .. 2]]; |
1250
|
8
|
|
|
|
|
2374
|
$n = [$n->[0] - $a->[0], $n->[1] - $a->[1], $n->[2] - $a->[2]]; |
1251
|
8
|
|
|
|
|
21
|
my $q_p = [$q->[0] - $p->[0], $q->[1] - $p->[1], $q->[2] - $p->[2]]; |
1252
|
8
|
|
|
|
|
26
|
my $k = vector_dot_product ([$a->[0] - $p->[0], $a->[1] - $p->[1], $a->[2] - $p->[2]], $n) / |
1253
|
|
|
|
|
|
|
vector_dot_product ($q_p, $n); |
1254
|
8
|
|
|
|
|
211
|
[$q_p->[0] * $k + $p->[0], $q_p->[1] * $k + $p->[1], $q_p->[2] * $k + $p->[2]]; |
1255
|
|
|
|
|
|
|
}; |
1256
|
8
|
|
|
|
|
22
|
my $sub_point = Astro::Coord::ECI->new( |
1257
|
|
|
|
|
|
|
station => $station )->universal( $time )->eci( @$sub_vector ); |
1258
|
|
|
|
|
|
|
|
1259
|
|
|
|
|
|
|
# Stash the data. |
1260
|
|
|
|
|
|
|
|
1261
|
8
|
|
|
|
|
1085
|
my %rslt = ( |
1262
|
|
|
|
|
|
|
angle => $angle, # Mirror angle, radians |
1263
|
|
|
|
|
|
|
appulse => { # Relationship of flare to Sun |
1264
|
|
|
|
|
|
|
angle => $sun_angle, # Angle from flare to Sun |
1265
|
|
|
|
|
|
|
body => $sun, # Reference to Sun |
1266
|
|
|
|
|
|
|
}, |
1267
|
|
|
|
|
|
|
area => $sat_area, # Projected MMA area, square radians |
1268
|
|
|
|
|
|
|
azimuth => $azim, # Azimuth of flare |
1269
|
|
|
|
|
|
|
body => $self, # Reference to flaring body |
1270
|
|
|
|
|
|
|
center => { # Information on flare center |
1271
|
|
|
|
|
|
|
body => $sub_point, # Location of center |
1272
|
|
|
|
|
|
|
magnitude => $central_mag, # Predicted magnitude at center |
1273
|
|
|
|
|
|
|
}, |
1274
|
|
|
|
|
|
|
elevation => $elev, # Elevation of flare |
1275
|
|
|
|
|
|
|
magnitude => $flare_mag, # Estimated magnitude |
1276
|
|
|
|
|
|
|
mma => $mma, # Flaring mma (0, 1, or 2) |
1277
|
|
|
|
|
|
|
range => $sat_range, # Range to satellite, kilometers |
1278
|
|
|
|
|
|
|
specular => $limb_darkening, # True if specular |
1279
|
|
|
|
|
|
|
station => $station, # Observer's location |
1280
|
|
|
|
|
|
|
status => '', # True if below horizon or not illum |
1281
|
|
|
|
|
|
|
time => $time, # Time of flare |
1282
|
|
|
|
|
|
|
type => $flare_type, # Flare type ('am', 'day', 'pm') |
1283
|
|
|
|
|
|
|
virtual_image => $virtual_image, # Virtual image of illum. |
1284
|
|
|
|
|
|
|
); |
1285
|
|
|
|
|
|
|
|
1286
|
8
|
50
|
|
|
|
35
|
return wantarray ? %rslt : \%rslt; |
1287
|
|
|
|
|
|
|
} |
1288
|
|
|
|
|
|
|
|
1289
|
|
|
|
|
|
|
# $ainv = _invert_matrix_list ($a) |
1290
|
|
|
|
|
|
|
|
1291
|
|
|
|
|
|
|
# This subroutine takes a reference to a list of three list |
1292
|
|
|
|
|
|
|
# references, considers them as a matrix, and inverts that |
1293
|
|
|
|
|
|
|
# matrix, returning a reference to the list of list references |
1294
|
|
|
|
|
|
|
# that represents the inverted matrix. If called in list context, |
1295
|
|
|
|
|
|
|
# it returns the list itself. You can also pass the three input |
1296
|
|
|
|
|
|
|
# list references as a list. |
1297
|
|
|
|
|
|
|
|
1298
|
|
|
|
|
|
|
sub _invert_matrix_list { |
1299
|
17
|
|
|
17
|
|
30
|
my @args = @_; |
1300
|
17
|
50
|
|
|
|
27
|
confess <<'EOD' unless (grep { ARRAY_REF eq ref $_ } @args) == 3; |
|
51
|
|
|
|
|
102
|
|
1301
|
|
|
|
|
|
|
Programming error -- _invert_matrix_list takes as its arguments three |
1302
|
|
|
|
|
|
|
list references. |
1303
|
|
|
|
|
|
|
EOD |
1304
|
17
|
|
|
|
|
22
|
my ($a, $b, $c) = @{$args[0]}; |
|
17
|
|
|
|
|
33
|
|
1305
|
17
|
|
|
|
|
26
|
my ($d, $e, $f) = @{$args[1]}; |
|
17
|
|
|
|
|
23
|
|
1306
|
17
|
|
|
|
|
19
|
my ($g, $h, $i) = @{$args[2]}; |
|
17
|
|
|
|
|
26
|
|
1307
|
17
|
|
|
|
|
30
|
my $ei_fh = $e * $i - $f * $h; |
1308
|
17
|
|
|
|
|
21
|
my $fg_di = $f * $g - $d * $i; |
1309
|
17
|
|
|
|
|
31
|
my $dh_eg = $d * $h - $e * $g; |
1310
|
17
|
|
|
|
|
34
|
my $A = $a * $ei_fh + $b * $fg_di + $c * $dh_eg; |
1311
|
17
|
50
|
|
|
|
40
|
confess <
|
1312
|
|
|
|
|
|
|
Programming error -- You are trying to invert a singular matrix. This |
1313
|
|
|
|
|
|
|
should not happen since our purpose is to undo a rotation. |
1314
|
|
|
|
|
|
|
eod |
1315
|
17
|
|
|
|
|
93
|
my @inv = ( |
1316
|
|
|
|
|
|
|
[$ei_fh / $A, ($c * $h - $b * $i) / $A, ($b * $f - $c * $e) / $A], |
1317
|
|
|
|
|
|
|
[$fg_di / $A, ($a * $i - $c * $g) / $A, ($c * $d - $a * $f) / $A], |
1318
|
|
|
|
|
|
|
[$dh_eg / $A, ($b * $g - $a * $h) / $A, ($a * $e - $b * $d) / $A], |
1319
|
|
|
|
|
|
|
); |
1320
|
17
|
100
|
|
|
|
53
|
return wantarray ? @inv : \@inv; |
1321
|
|
|
|
|
|
|
} |
1322
|
|
|
|
|
|
|
|
1323
|
|
|
|
|
|
|
# $a = _list_angle ($A, $B, $C) |
1324
|
|
|
|
|
|
|
# |
1325
|
|
|
|
|
|
|
# This subroutine takes as input three list references, which are |
1326
|
|
|
|
|
|
|
# assumed to define the coordinates of the vertices of a |
1327
|
|
|
|
|
|
|
# triangle. The angle of the first vertex is computed (in |
1328
|
|
|
|
|
|
|
# radians) by the law of cosines, and returned. |
1329
|
|
|
|
|
|
|
|
1330
|
|
|
|
|
|
|
sub _list_angle { |
1331
|
222
|
|
|
222
|
|
275
|
my $A = shift; |
1332
|
222
|
|
|
|
|
259
|
my $B = shift; |
1333
|
222
|
|
|
|
|
241
|
my $C = shift; |
1334
|
|
|
|
|
|
|
|
1335
|
222
|
|
|
|
|
376
|
my $a = distsq ($B, $C); |
1336
|
222
|
|
|
|
|
3418
|
my $b = distsq ($A, $C); |
1337
|
222
|
|
|
|
|
3099
|
my $c = distsq ($A, $B); |
1338
|
|
|
|
|
|
|
|
1339
|
222
|
|
|
|
|
3280
|
return acos (($b + $c - $a) / sqrt (4 * $b * $c)); |
1340
|
|
|
|
|
|
|
} |
1341
|
|
|
|
|
|
|
|
1342
|
|
|
|
|
|
|
=item $value = $tle->get ($name); |
1343
|
|
|
|
|
|
|
|
1344
|
|
|
|
|
|
|
This method returns the value of the given attribute. Attributes other |
1345
|
|
|
|
|
|
|
than 'status' are delegated to the parent. |
1346
|
|
|
|
|
|
|
|
1347
|
|
|
|
|
|
|
=cut |
1348
|
|
|
|
|
|
|
|
1349
|
|
|
|
|
|
|
sub get { |
1350
|
1072
|
|
|
1072
|
1
|
126788
|
my $self = shift; |
1351
|
1072
|
|
|
|
|
1180
|
my $name = shift; |
1352
|
|
|
|
|
|
|
|
1353
|
1072
|
100
|
|
|
|
1685
|
if (!$accessor{$name}) { |
|
|
50
|
|
|
|
|
|
1354
|
1045
|
|
|
|
|
1788
|
return $self->SUPER::get ($name); |
1355
|
|
|
|
|
|
|
} elsif (ref $self) { |
1356
|
27
|
|
|
|
|
60
|
return $accessor{$name}->($self, $name); |
1357
|
|
|
|
|
|
|
} else { |
1358
|
0
|
|
|
|
|
0
|
return $accessor{$name}->(\%statatr, $name); |
1359
|
|
|
|
|
|
|
} |
1360
|
|
|
|
|
|
|
} |
1361
|
|
|
|
|
|
|
|
1362
|
|
|
|
|
|
|
# $status = _make_status ($message); |
1363
|
|
|
|
|
|
|
|
1364
|
|
|
|
|
|
|
# This subroutine returns a reference to a hash with key 'status' |
1365
|
|
|
|
|
|
|
# containing the given message. In list context it returns the |
1366
|
|
|
|
|
|
|
# hash itself. |
1367
|
|
|
|
|
|
|
|
1368
|
|
|
|
|
|
|
sub _make_status { |
1369
|
8
|
|
|
8
|
|
22
|
my %stat = (status => @_); |
1370
|
8
|
50
|
|
|
|
21
|
return wantarray ? %stat : \%stat; |
1371
|
|
|
|
|
|
|
} |
1372
|
|
|
|
|
|
|
|
1373
|
|
|
|
|
|
|
=item $mag = $tle->magnitude( $station ); |
1374
|
|
|
|
|
|
|
|
1375
|
|
|
|
|
|
|
This override of the superclass' method method returns the magnitude of |
1376
|
|
|
|
|
|
|
the body as seen from the given station at the body's currently-set |
1377
|
|
|
|
|
|
|
time. If no C<$station> is specified, the object's C<'station'> |
1378
|
|
|
|
|
|
|
attribute is used. If that is not set, and exception is thrown. |
1379
|
|
|
|
|
|
|
|
1380
|
|
|
|
|
|
|
This method calls the superclass' C, and returns C |
1381
|
|
|
|
|
|
|
if the superclass does. Otherwise it adds to the magnitude of the body |
1382
|
|
|
|
|
|
|
itself the magnitude of any flare in progress, and returns the result. |
1383
|
|
|
|
|
|
|
|
1384
|
|
|
|
|
|
|
=cut |
1385
|
|
|
|
|
|
|
|
1386
|
|
|
|
|
|
|
sub magnitude { |
1387
|
4
|
|
|
4
|
1
|
794
|
my ( $self, $sta ) = __default_station( @_ ); |
1388
|
4
|
50
|
|
|
|
103
|
defined( my $mag = $self->SUPER::magnitude( $sta ) ) |
1389
|
|
|
|
|
|
|
or return undef; ## no critic (ProhibitExplicitReturnUndef) |
1390
|
4
|
|
|
|
|
1694
|
my $time = $self->universal(); |
1391
|
12
|
|
|
|
|
21
|
my @flare = grep { defined } |
1392
|
4
|
|
|
|
|
37
|
map { $_->{magnitude} } |
|
12
|
|
|
|
|
20
|
|
1393
|
|
|
|
|
|
|
$self->reflection( $sta, $time ); |
1394
|
|
|
|
|
|
|
@flare |
1395
|
4
|
50
|
|
|
|
48
|
and $mag = add_magnitudes( $mag, @flare ); |
1396
|
4
|
|
|
|
|
49
|
return $mag; |
1397
|
|
|
|
|
|
|
} |
1398
|
|
|
|
|
|
|
|
1399
|
|
|
|
|
|
|
=item @data = $tle->reflection ($station, $time) |
1400
|
|
|
|
|
|
|
|
1401
|
|
|
|
|
|
|
This method returns a list of references to hashes containing the same |
1402
|
|
|
|
|
|
|
data as returned for a flare, calculated for the given observer and time |
1403
|
|
|
|
|
|
|
for all Main Mission Antennae. If C<$time> is C, the current time |
1404
|
|
|
|
|
|
|
setting of the invocant is used. If C<$station> is C the current |
1405
|
|
|
|
|
|
|
C attribute is used. Note the following differences from the |
1406
|
|
|
|
|
|
|
flare() hash: |
1407
|
|
|
|
|
|
|
|
1408
|
|
|
|
|
|
|
If the hash contains a 'status' key which is true (in the Perl sense), |
1409
|
|
|
|
|
|
|
no reflection occurred, and the content of the key is a message saying |
1410
|
|
|
|
|
|
|
why not. If the 'mma' key exists in addition to the 'status' key, the |
1411
|
|
|
|
|
|
|
failure applies only to that MMA, and other MMAs may possibly generate a |
1412
|
|
|
|
|
|
|
reflection. If the 'mma' key does not exist, then the satellite is |
1413
|
|
|
|
|
|
|
either not illuminated or below the horizon for the given observer, and |
1414
|
|
|
|
|
|
|
the @data list will contain only a single entry. |
1415
|
|
|
|
|
|
|
|
1416
|
|
|
|
|
|
|
Other than (maybe) 'mma', no other keys should be assumed to exist if |
1417
|
|
|
|
|
|
|
the 'status' key is true. |
1418
|
|
|
|
|
|
|
|
1419
|
|
|
|
|
|
|
If called in scalar context, a reference to the \@data list is returned. |
1420
|
|
|
|
|
|
|
|
1421
|
|
|
|
|
|
|
B that prior to 0.061_01 the C<$time> argument defaulted to the |
1422
|
|
|
|
|
|
|
current time. This behavior was undocumented, and therefore I felt free |
1423
|
|
|
|
|
|
|
to change it. |
1424
|
|
|
|
|
|
|
|
1425
|
|
|
|
|
|
|
=cut |
1426
|
|
|
|
|
|
|
|
1427
|
|
|
|
|
|
|
sub reflection { |
1428
|
4
|
|
|
4
|
1
|
9
|
my ( $self, $station, $time ) = __default_station( @_ ); |
1429
|
4
|
|
|
|
|
87
|
my $method = "_reflection_$self->{&ATTRIBUTE_KEY}{algorithm}"; |
1430
|
4
|
|
|
|
|
13
|
return $self->$method( $station, $time ); |
1431
|
|
|
|
|
|
|
} |
1432
|
|
|
|
|
|
|
|
1433
|
|
|
|
|
|
|
# Called as $self->$method, above |
1434
|
|
|
|
|
|
|
sub _reflection_fixed { ## no critic (ProhibitUnusedPrivateSubroutines) |
1435
|
4
|
|
|
4
|
|
6
|
my ( $self, $station, $time ) = @_; |
1436
|
4
|
50
|
|
|
|
9
|
defined $time |
1437
|
|
|
|
|
|
|
or $time = $self->universal(); |
1438
|
4
|
|
|
|
|
8
|
my $debug = $self->get ('debug'); |
1439
|
4
|
|
|
|
|
29
|
my $illum = $self->get ('illum')->universal ($time); |
1440
|
|
|
|
|
|
|
|
1441
|
|
|
|
|
|
|
# Calculate whether satellite is above horizon. |
1442
|
|
|
|
|
|
|
|
1443
|
4
|
|
|
|
|
64
|
my (undef, $elev) = $station->universal ($time)-> |
1444
|
|
|
|
|
|
|
azel_offset( $self->universal ($time), 0 ); |
1445
|
4
|
50
|
|
|
|
247
|
return scalar _make_status ( |
1446
|
|
|
|
|
|
|
sprintf ('Satellite %.2f degrees below horizon', rad2deg (-$elev))) |
1447
|
|
|
|
|
|
|
unless $elev >= 0; |
1448
|
|
|
|
|
|
|
|
1449
|
|
|
|
|
|
|
# Calculate whether the satellite is illuminated. |
1450
|
|
|
|
|
|
|
|
1451
|
4
|
|
|
|
|
12
|
my $lit = ($self->azel ($illum->universal ($time)))[1] - $self->dip (); |
1452
|
4
|
50
|
|
|
|
119
|
return scalar _make_status ( |
1453
|
|
|
|
|
|
|
sprintf ('Satellite fails to be illuminated by %.2f degrees', |
1454
|
|
|
|
|
|
|
rad2deg (-$lit))) |
1455
|
|
|
|
|
|
|
unless $lit >= 0; |
1456
|
|
|
|
|
|
|
|
1457
|
|
|
|
|
|
|
# Transform the relevant coordinates into a coordinate system |
1458
|
|
|
|
|
|
|
# in which the axis of the satellite is along the Z axis (with |
1459
|
|
|
|
|
|
|
# the Earth in the negative Z direction) and the direction of |
1460
|
|
|
|
|
|
|
# motion (and hence one of the Main Mission Antennae) is along |
1461
|
|
|
|
|
|
|
# the X axis. |
1462
|
|
|
|
|
|
|
|
1463
|
4
|
|
|
|
|
11
|
my ( $illum_vector, $station_vector ) = |
1464
|
|
|
|
|
|
|
$self->_flare_transform_coords_list( $illum, $station ); |
1465
|
|
|
|
|
|
|
|
1466
|
4
|
|
|
|
|
7
|
my @rslt; |
1467
|
|
|
|
|
|
|
|
1468
|
4
|
|
|
|
|
7
|
foreach my $mma (0 .. 2) { |
1469
|
|
|
|
|
|
|
|
1470
|
|
|
|
|
|
|
# We calculate |
1471
|
|
|
|
|
|
|
# the angle between the satellite and the reflection of the Sun, |
1472
|
|
|
|
|
|
|
# as seen by the observer. We skip to the next antenna if no |
1473
|
|
|
|
|
|
|
# reflection is generated. |
1474
|
|
|
|
|
|
|
|
1475
|
12
|
|
|
|
|
20
|
my $angle = _flare_calculate_angle_list( |
1476
|
|
|
|
|
|
|
$mma, $illum_vector, $station_vector ); |
1477
|
12
|
50
|
|
|
|
37
|
warn <
|
1478
|
0
|
0
|
|
|
|
0
|
MMA $mma Angle: @{[defined $angle ? rad2deg ($angle) . ' degrees' : |
1479
|
|
|
|
|
|
|
'undefined']} |
1480
|
|
|
|
|
|
|
eod |
1481
|
12
|
100
|
|
|
|
32
|
push @rslt, defined $angle ? |
1482
|
|
|
|
|
|
|
scalar $self->_flare_char_list ($station, $mma, $angle, $time, |
1483
|
|
|
|
|
|
|
$illum_vector, $station_vector) : |
1484
|
|
|
|
|
|
|
scalar _make_status ('Geometry does not allow reflection', |
1485
|
|
|
|
|
|
|
mma => $mma); |
1486
|
|
|
|
|
|
|
} |
1487
|
|
|
|
|
|
|
|
1488
|
4
|
50
|
|
|
|
18
|
return wantarray ? @rslt : \@rslt; |
1489
|
|
|
|
|
|
|
} |
1490
|
|
|
|
|
|
|
|
1491
|
|
|
|
|
|
|
=item $tle->set ($name => $value ...) |
1492
|
|
|
|
|
|
|
|
1493
|
|
|
|
|
|
|
This method sets the value of the given attribute (or attributes). |
1494
|
|
|
|
|
|
|
Attributes other than 'status' are delegated to the parent. |
1495
|
|
|
|
|
|
|
|
1496
|
|
|
|
|
|
|
=cut |
1497
|
|
|
|
|
|
|
|
1498
|
|
|
|
|
|
|
sub set { |
1499
|
14
|
|
|
14
|
1
|
1314
|
my ($self, @args) = @_; |
1500
|
14
|
|
|
|
|
29
|
while (@args) { |
1501
|
78
|
|
|
|
|
306
|
my $name = shift @args; |
1502
|
78
|
|
|
|
|
88
|
my $value = shift @args; |
1503
|
78
|
100
|
|
|
|
138
|
if (!$mutator{$name}) { |
|
|
50
|
|
|
|
|
|
1504
|
13
|
|
|
|
|
35
|
$self->SUPER::set ($name, $value); |
1505
|
|
|
|
|
|
|
} elsif (ref $self) { |
1506
|
65
|
|
|
|
|
100
|
$mutator{$name}->($self, $name, $value); |
1507
|
|
|
|
|
|
|
} else { |
1508
|
0
|
|
|
|
|
0
|
$mutator{$name}->(\%statatr, $name, $value); |
1509
|
|
|
|
|
|
|
} |
1510
|
|
|
|
|
|
|
} |
1511
|
14
|
|
|
|
|
212
|
return $self; |
1512
|
|
|
|
|
|
|
} |
1513
|
|
|
|
|
|
|
|
1514
|
|
|
|
|
|
|
# For use of -am and -pm |
1515
|
|
|
|
|
|
|
{ |
1516
|
|
|
|
|
|
|
my $date_time_available = eval { |
1517
|
|
|
|
|
|
|
load_module( 'DateTime' ); |
1518
|
|
|
|
|
|
|
load_module( 'DateTime::TimeZone' ); |
1519
|
|
|
|
|
|
|
1; |
1520
|
|
|
|
|
|
|
}; |
1521
|
|
|
|
|
|
|
|
1522
|
|
|
|
|
|
|
sub _time_in_zone { |
1523
|
4
|
|
|
4
|
|
32
|
my ( $self, $time ) = @_; |
1524
|
|
|
|
|
|
|
|
1525
|
4
|
50
|
|
|
|
15
|
defined( my $zone = $self->get( 'zone' ) ) |
1526
|
|
|
|
|
|
|
or return localtime $time; |
1527
|
|
|
|
|
|
|
|
1528
|
4
|
50
|
|
|
|
31
|
looks_like_number( $zone ) |
1529
|
|
|
|
|
|
|
and return gmtime( $zone * 3600 + $time ); |
1530
|
|
|
|
|
|
|
|
1531
|
0
|
0
|
|
|
|
0
|
if ( $date_time_available ) { |
1532
|
|
|
|
|
|
|
|
1533
|
0
|
|
|
|
|
0
|
my $dt = DateTime->from_epoch( |
1534
|
|
|
|
|
|
|
epoch => $time, |
1535
|
|
|
|
|
|
|
time_zone => $zone, |
1536
|
|
|
|
|
|
|
); |
1537
|
|
|
|
|
|
|
|
1538
|
0
|
|
|
|
|
0
|
my @localtime = map { $dt->$_() } qw{ second minute hour day |
|
0
|
|
|
|
|
0
|
|
1539
|
|
|
|
|
|
|
month_0 year day_of_week_0 day_of_year_0 is_dst }; |
1540
|
0
|
|
|
|
|
0
|
$localtime[5] -= 1900; |
1541
|
0
|
|
|
|
|
0
|
return @localtime; |
1542
|
|
|
|
|
|
|
|
1543
|
|
|
|
|
|
|
} else { |
1544
|
|
|
|
|
|
|
|
1545
|
0
|
|
|
|
|
0
|
local $ENV{TZ} = $zone; |
1546
|
0
|
|
|
|
|
0
|
return localtime $time; |
1547
|
|
|
|
|
|
|
|
1548
|
|
|
|
|
|
|
} |
1549
|
|
|
|
|
|
|
} |
1550
|
|
|
|
|
|
|
} |
1551
|
|
|
|
|
|
|
|
1552
|
|
|
|
|
|
|
sub __parse_name { |
1553
|
1
|
|
|
1
|
|
11
|
my ( $self, $name ) = @_; |
1554
|
1
|
50
|
33
|
|
|
3
|
defined $name |
1555
|
|
|
|
|
|
|
and $name =~ s/ \s* [[] ( \S ) []] \s* \z //smx |
1556
|
|
|
|
|
|
|
and $self->_set_operational_status( status => $1 ); |
1557
|
1
|
|
|
|
|
5
|
return $self->SUPER::__parse_name( $name ); |
1558
|
|
|
|
|
|
|
} |
1559
|
|
|
|
|
|
|
|
1560
|
|
|
|
|
|
|
{ |
1561
|
|
|
|
|
|
|
my @encode_status; |
1562
|
|
|
|
|
|
|
$encode_status[BODY_STATUS_IS_OPERATIONAL] = '+'; |
1563
|
|
|
|
|
|
|
$encode_status[BODY_STATUS_IS_SPARE] = 'S'; |
1564
|
|
|
|
|
|
|
$encode_status[BODY_STATUS_IS_TUMBLING] = '-'; |
1565
|
|
|
|
|
|
|
$encode_status[BODY_STATUS_IS_DECAYED] = 'D'; |
1566
|
|
|
|
|
|
|
|
1567
|
|
|
|
|
|
|
sub __encode_operational_status { |
1568
|
|
|
|
|
|
|
## my ( $self, $name, $status ) = @_; |
1569
|
0
|
|
|
0
|
|
0
|
my ( $self, undef, $status ) = @_; # Name unused |
1570
|
0
|
0
|
|
|
|
0
|
defined $status |
1571
|
|
|
|
|
|
|
or $status = $self->get( 'status' ); |
1572
|
0
|
0
|
|
|
|
0
|
defined $encode_status[ $status ] |
1573
|
|
|
|
|
|
|
or return BODY_STATUS_IS_TUMBLING; |
1574
|
0
|
|
|
|
|
0
|
return $encode_status[ $status ]; |
1575
|
|
|
|
|
|
|
} |
1576
|
|
|
|
|
|
|
} |
1577
|
|
|
|
|
|
|
|
1578
|
|
|
|
|
|
|
{ |
1579
|
|
|
|
|
|
|
|
1580
|
|
|
|
|
|
|
my %status_map = ( |
1581
|
|
|
|
|
|
|
BODY_STATUS_IS_OPERATIONAL() => BODY_STATUS_IS_OPERATIONAL, |
1582
|
|
|
|
|
|
|
'' => BODY_STATUS_IS_OPERATIONAL, |
1583
|
|
|
|
|
|
|
'+' => BODY_STATUS_IS_OPERATIONAL, |
1584
|
|
|
|
|
|
|
BODY_STATUS_IS_SPARE() => BODY_STATUS_IS_SPARE, |
1585
|
|
|
|
|
|
|
'?' => BODY_STATUS_IS_SPARE, |
1586
|
|
|
|
|
|
|
'S' => BODY_STATUS_IS_SPARE, |
1587
|
|
|
|
|
|
|
's' => BODY_STATUS_IS_SPARE, |
1588
|
|
|
|
|
|
|
'D' => BODY_STATUS_IS_DECAYED, |
1589
|
|
|
|
|
|
|
'd' => BODY_STATUS_IS_DECAYED, |
1590
|
|
|
|
|
|
|
BODY_STATUS_IS_TUMBLING() => BODY_STATUS_IS_TUMBLING, |
1591
|
|
|
|
|
|
|
BODY_STATUS_IS_DECAYED() => BODY_STATUS_IS_DECAYED, |
1592
|
|
|
|
|
|
|
); |
1593
|
|
|
|
|
|
|
|
1594
|
|
|
|
|
|
|
sub __decode_operational_status { |
1595
|
295
|
|
|
295
|
|
38531
|
my ( $value ) = @_; |
1596
|
295
|
50
|
|
|
|
432
|
defined $value |
1597
|
|
|
|
|
|
|
or return BODY_STATUS_IS_OPERATIONAL;; |
1598
|
295
|
100
|
|
|
|
480
|
defined $status_map{$value} |
1599
|
|
|
|
|
|
|
or return BODY_STATUS_IS_TUMBLING; |
1600
|
199
|
|
|
|
|
293
|
return $status_map{$value}; |
1601
|
|
|
|
|
|
|
} |
1602
|
|
|
|
|
|
|
} |
1603
|
|
|
|
|
|
|
|
1604
|
|
|
|
|
|
|
sub _set_operational_status { |
1605
|
0
|
|
|
0
|
|
|
my ( $self, $name, $value ) = @_; |
1606
|
0
|
|
|
|
|
|
$self->{&ATTRIBUTE_KEY}{$name} = __decode_operational_status( $value ); |
1607
|
0
|
|
|
|
|
|
return $self; |
1608
|
|
|
|
|
|
|
} |
1609
|
|
|
|
|
|
|
|
1610
|
|
|
|
|
|
|
{ |
1611
|
|
|
|
|
|
|
my %json_map = ( |
1612
|
|
|
|
|
|
|
operational_status => \&__encode_operational_status, |
1613
|
|
|
|
|
|
|
); |
1614
|
|
|
|
|
|
|
|
1615
|
|
|
|
|
|
|
sub TO_JSON { |
1616
|
0
|
|
|
0
|
1
|
|
my ( $self ) = @_; |
1617
|
0
|
|
|
|
|
|
return $self->__to_json( |
1618
|
|
|
|
|
|
|
\%json_map, |
1619
|
|
|
|
|
|
|
$self->SUPER::TO_JSON(), |
1620
|
|
|
|
|
|
|
); |
1621
|
|
|
|
|
|
|
} |
1622
|
|
|
|
|
|
|
} |
1623
|
|
|
|
|
|
|
|
1624
|
|
|
|
|
|
|
# All Iridium Classic satellites. |
1625
|
|
|
|
|
|
|
# |
1626
|
|
|
|
|
|
|
# Generated by Astro::SpaceTrack |
1627
|
|
|
|
|
|
|
# $ tools/all_iridium_classic -iridium -indent=0 |
1628
|
|
|
|
|
|
|
# on Mon Jun 29 12:08:42 2020 GMT |
1629
|
|
|
|
|
|
|
# |
1630
|
|
|
|
|
|
|
# The following static method is UNSUPPORTED, and exists solely for the |
1631
|
|
|
|
|
|
|
# benefit of xt/author/iridium_status.t. It may be modified or revoked |
1632
|
|
|
|
|
|
|
# at any time. |
1633
|
0
|
|
|
0
|
|
|
sub __iridium_status_as_of { return( qw{ 7 16 11 29 5 2020 } ) } |
1634
|
|
|
|
|
|
|
|
1635
|
|
|
|
|
|
|
__PACKAGE__->status( clear => 'iridium' ); |
1636
|
|
|
|
|
|
|
__PACKAGE__->status( add => 24792, iridium => 'D', 'Iridium 8', 'Decayed 2017-11-24' ); |
1637
|
|
|
|
|
|
|
__PACKAGE__->status( add => 24793, iridium => '-', 'Iridium 7', 'Tumbling' ); |
1638
|
|
|
|
|
|
|
__PACKAGE__->status( add => 24794, iridium => 'D', 'Iridium 6', 'Decayed 2017-12-23' ); |
1639
|
|
|
|
|
|
|
__PACKAGE__->status( add => 24795, iridium => '-', 'Iridium 5', 'Tumbling' ); |
1640
|
|
|
|
|
|
|
__PACKAGE__->status( add => 24796, iridium => '-', 'Iridium 4', 'Tumbling' ); |
1641
|
|
|
|
|
|
|
__PACKAGE__->status( add => 24836, iridium => '-', 'Iridium 914', 'Tumbling' ); |
1642
|
|
|
|
|
|
|
__PACKAGE__->status( add => 24837, iridium => 'D', 'Iridium 12', 'Decayed 2018-09-02' ); |
1643
|
|
|
|
|
|
|
__PACKAGE__->status( add => 24838, iridium => 'D', 'Iridium 9', 'Decayed 2003-03-11' ); |
1644
|
|
|
|
|
|
|
__PACKAGE__->status( add => 24839, iridium => 'D', 'Iridium 10', 'Decayed 2018-10-06' ); |
1645
|
|
|
|
|
|
|
__PACKAGE__->status( add => 24840, iridium => 'D', 'Iridium 13', 'Decayed 2018-04-29' ); |
1646
|
|
|
|
|
|
|
__PACKAGE__->status( add => 24841, iridium => '-', 'Iridium 16', 'Tumbling' ); |
1647
|
|
|
|
|
|
|
__PACKAGE__->status( add => 24842, iridium => '-', 'Iridium 911', 'Tumbling' ); |
1648
|
|
|
|
|
|
|
__PACKAGE__->status( add => 24869, iridium => 'D', 'Iridium 15', 'Decayed 2018-10-14' ); |
1649
|
|
|
|
|
|
|
__PACKAGE__->status( add => 24870, iridium => '-', 'Iridium 17', 'Tumbling' ); |
1650
|
|
|
|
|
|
|
__PACKAGE__->status( add => 24871, iridium => '-', 'Iridium 920', 'Tumbling' ); |
1651
|
|
|
|
|
|
|
__PACKAGE__->status( add => 24872, iridium => 'D', 'Iridium 18', 'Decayed 2018-08-19' ); |
1652
|
|
|
|
|
|
|
__PACKAGE__->status( add => 24873, iridium => '-', 'Iridium 921', 'Tumbling' ); |
1653
|
|
|
|
|
|
|
__PACKAGE__->status( add => 24903, iridium => '-', 'Iridium 26', 'Tumbling' ); |
1654
|
|
|
|
|
|
|
__PACKAGE__->status( add => 24904, iridium => 'D', 'Iridium 25', 'Decayed 2018-05-14' ); |
1655
|
|
|
|
|
|
|
__PACKAGE__->status( add => 24905, iridium => 'D', 'Iridium 46', 'Decayed 2019-05-11' ); |
1656
|
|
|
|
|
|
|
__PACKAGE__->status( add => 24906, iridium => 'D', 'Iridium 23', 'Decayed 2018-03-28' ); |
1657
|
|
|
|
|
|
|
__PACKAGE__->status( add => 24907, iridium => '-', 'Iridium 22', 'Tumbling' ); |
1658
|
|
|
|
|
|
|
__PACKAGE__->status( add => 24925, iridium => '-', 'Dummy mass 1', 'Tumbling' ); |
1659
|
|
|
|
|
|
|
__PACKAGE__->status( add => 24926, iridium => '-', 'Dummy mass 2', 'Tumbling' ); |
1660
|
|
|
|
|
|
|
__PACKAGE__->status( add => 24944, iridium => '-', 'Iridium 29', 'Tumbling' ); |
1661
|
|
|
|
|
|
|
__PACKAGE__->status( add => 24945, iridium => 'D', 'Iridium 32', 'Decayed 2019-03-10' ); |
1662
|
|
|
|
|
|
|
__PACKAGE__->status( add => 24946, iridium => '-', 'Iridium 33', 'Tumbling' ); |
1663
|
|
|
|
|
|
|
__PACKAGE__->status( add => 24947, iridium => 'D', 'Iridium 27', 'Decayed 2002-02-01' ); |
1664
|
|
|
|
|
|
|
__PACKAGE__->status( add => 24948, iridium => '-', 'Iridium 28', 'Tumbling' ); |
1665
|
|
|
|
|
|
|
__PACKAGE__->status( add => 24949, iridium => 'D', 'Iridium 30', 'Decayed 2017-09-28' ); |
1666
|
|
|
|
|
|
|
__PACKAGE__->status( add => 24950, iridium => 'D', 'Iridium 31', 'Decayed 2018-12-20' ); |
1667
|
|
|
|
|
|
|
__PACKAGE__->status( add => 24965, iridium => 'D', 'Iridium 19', 'Decayed 2018-04-07' ); |
1668
|
|
|
|
|
|
|
__PACKAGE__->status( add => 24966, iridium => 'D', 'Iridium 35', 'Decayed 2018-12-26' ); |
1669
|
|
|
|
|
|
|
__PACKAGE__->status( add => 24967, iridium => '-', 'Iridium 36', 'Tumbling' ); |
1670
|
|
|
|
|
|
|
__PACKAGE__->status( add => 24968, iridium => 'D', 'Iridium 37', 'Decayed 2018-05-26' ); |
1671
|
|
|
|
|
|
|
__PACKAGE__->status( add => 24969, iridium => 'D', 'Iridium 34', 'Decayed 2018-01-08' ); |
1672
|
|
|
|
|
|
|
__PACKAGE__->status( add => 25039, iridium => 'D', 'Iridium 43', 'Decayed 2018-02-11' ); |
1673
|
|
|
|
|
|
|
__PACKAGE__->status( add => 25040, iridium => 'D', 'Iridium 41', 'Decayed 2018-07-28' ); |
1674
|
|
|
|
|
|
|
__PACKAGE__->status( add => 25041, iridium => 'D', 'Iridium 40', 'Decayed 2018-09-23' ); |
1675
|
|
|
|
|
|
|
__PACKAGE__->status( add => 25042, iridium => '-', 'Iridium 39', 'Tumbling' ); |
1676
|
|
|
|
|
|
|
__PACKAGE__->status( add => 25043, iridium => '-', 'Iridium 38', 'Tumbling' ); |
1677
|
|
|
|
|
|
|
__PACKAGE__->status( add => 25077, iridium => '-', 'Iridium 42', 'Tumbling' ); |
1678
|
|
|
|
|
|
|
__PACKAGE__->status( add => 25078, iridium => '-', 'Iridium 44', 'Tumbling' ); |
1679
|
|
|
|
|
|
|
__PACKAGE__->status( add => 25104, iridium => '-', 'Iridium 45', 'Tumbling' ); |
1680
|
|
|
|
|
|
|
__PACKAGE__->status( add => 25105, iridium => '-', 'Iridium 24', 'Tumbling' ); |
1681
|
|
|
|
|
|
|
__PACKAGE__->status( add => 25106, iridium => 'D', 'Iridium 47', 'Decayed 2018-09-01' ); |
1682
|
|
|
|
|
|
|
__PACKAGE__->status( add => 25107, iridium => 'D', 'Iridium 48', 'Decayed 2001-05-05' ); |
1683
|
|
|
|
|
|
|
__PACKAGE__->status( add => 25108, iridium => 'D', 'Iridium 49', 'Decayed 2018-02-13' ); |
1684
|
|
|
|
|
|
|
__PACKAGE__->status( add => 25169, iridium => 'D', 'Iridium 52', 'Decayed 2018-11-05' ); |
1685
|
|
|
|
|
|
|
__PACKAGE__->status( add => 25170, iridium => 'D', 'Iridium 56', 'Decayed 2018-10-11' ); |
1686
|
|
|
|
|
|
|
__PACKAGE__->status( add => 25171, iridium => 'D', 'Iridium 54', 'Decayed 2019-05-11' ); |
1687
|
|
|
|
|
|
|
__PACKAGE__->status( add => 25172, iridium => 'D', 'Iridium 50', 'Decayed 2018-09-23' ); |
1688
|
|
|
|
|
|
|
__PACKAGE__->status( add => 25173, iridium => 'D', 'Iridium 53', 'Decayed 2018-09-30' ); |
1689
|
|
|
|
|
|
|
__PACKAGE__->status( add => 25262, iridium => '-', 'Iridium 51', 'Tumbling' ); |
1690
|
|
|
|
|
|
|
__PACKAGE__->status( add => 25263, iridium => 'D', 'Iridium 61', 'Decayed 2019-07-23' ); |
1691
|
|
|
|
|
|
|
__PACKAGE__->status( add => 25272, iridium => 'D', 'Iridium 55', 'Decayed 2019-03-31' ); |
1692
|
|
|
|
|
|
|
__PACKAGE__->status( add => 25273, iridium => '-', 'Iridium 57', 'Tumbling' ); |
1693
|
|
|
|
|
|
|
__PACKAGE__->status( add => 25274, iridium => 'D', 'Iridium 58', 'Decayed 2019-04-07' ); |
1694
|
|
|
|
|
|
|
__PACKAGE__->status( add => 25275, iridium => 'D', 'Iridium 59', 'Decayed 2019-03-11' ); |
1695
|
|
|
|
|
|
|
__PACKAGE__->status( add => 25276, iridium => 'D', 'Iridium 60', 'Decayed 2019-03-17' ); |
1696
|
|
|
|
|
|
|
__PACKAGE__->status( add => 25285, iridium => 'D', 'Iridium 62', 'Decayed 2018-11-07' ); |
1697
|
|
|
|
|
|
|
__PACKAGE__->status( add => 25286, iridium => '-', 'Iridium 63', 'Tumbling' ); |
1698
|
|
|
|
|
|
|
__PACKAGE__->status( add => 25287, iridium => 'D', 'Iridium 64', 'Decayed 2019-04-01' ); |
1699
|
|
|
|
|
|
|
__PACKAGE__->status( add => 25288, iridium => 'D', 'Iridium 65', 'Decayed 2018-07-19' ); |
1700
|
|
|
|
|
|
|
__PACKAGE__->status( add => 25289, iridium => 'D', 'Iridium 66', 'Decayed 2018-08-23' ); |
1701
|
|
|
|
|
|
|
__PACKAGE__->status( add => 25290, iridium => 'D', 'Iridium 67', 'Decayed 2018-07-02' ); |
1702
|
|
|
|
|
|
|
__PACKAGE__->status( add => 25291, iridium => 'D', 'Iridium 68', 'Decayed 2018-06-06' ); |
1703
|
|
|
|
|
|
|
__PACKAGE__->status( add => 25319, iridium => '-', 'Iridium 69', 'Tumbling' ); |
1704
|
|
|
|
|
|
|
__PACKAGE__->status( add => 25320, iridium => '-', 'Iridium 71', 'Tumbling' ); |
1705
|
|
|
|
|
|
|
__PACKAGE__->status( add => 25342, iridium => 'D', 'Iridium 70', 'Decayed 2018-10-11' ); |
1706
|
|
|
|
|
|
|
__PACKAGE__->status( add => 25343, iridium => 'D', 'Iridium 72', 'Decayed 2018-05-14' ); |
1707
|
|
|
|
|
|
|
__PACKAGE__->status( add => 25344, iridium => '-', 'Iridium 73', 'Tumbling' ); |
1708
|
|
|
|
|
|
|
__PACKAGE__->status( add => 25345, iridium => 'D', 'Iridium 74', 'Decayed 2017-06-11' ); |
1709
|
|
|
|
|
|
|
__PACKAGE__->status( add => 25346, iridium => 'D', 'Iridium 75', 'Decayed 2018-07-10' ); |
1710
|
|
|
|
|
|
|
__PACKAGE__->status( add => 25431, iridium => 'D', 'Iridium 3', 'Decayed 2018-02-08' ); |
1711
|
|
|
|
|
|
|
__PACKAGE__->status( add => 25432, iridium => 'D', 'Iridium 76', 'Decayed 2018-08-28' ); |
1712
|
|
|
|
|
|
|
__PACKAGE__->status( add => 25467, iridium => '-', 'Iridium 82', 'Tumbling' ); |
1713
|
|
|
|
|
|
|
__PACKAGE__->status( add => 25468, iridium => 'D', 'Iridium 81', 'Decayed 2018-07-17' ); |
1714
|
|
|
|
|
|
|
__PACKAGE__->status( add => 25469, iridium => 'D', 'Iridium 80', 'Decayed 2018-08-12' ); |
1715
|
|
|
|
|
|
|
__PACKAGE__->status( add => 25470, iridium => 'D', 'Iridium 79', 'Decayed 2000-11-29' ); |
1716
|
|
|
|
|
|
|
__PACKAGE__->status( add => 25471, iridium => 'D', 'Iridium 77', 'Decayed 2017-09-22' ); |
1717
|
|
|
|
|
|
|
__PACKAGE__->status( add => 25527, iridium => '-', 'Iridium 2', 'Tumbling' ); |
1718
|
|
|
|
|
|
|
__PACKAGE__->status( add => 25528, iridium => 'D', 'Iridium 86', 'Decayed 2018-10-05' ); |
1719
|
|
|
|
|
|
|
__PACKAGE__->status( add => 25529, iridium => 'D', 'Iridium 85', 'Decayed 2000-12-30' ); |
1720
|
|
|
|
|
|
|
__PACKAGE__->status( add => 25530, iridium => 'D', 'Iridium 84', 'Decayed 2018-11-04' ); |
1721
|
|
|
|
|
|
|
__PACKAGE__->status( add => 25531, iridium => 'D', 'Iridium 83', 'Decayed 2018-11-05' ); |
1722
|
|
|
|
|
|
|
__PACKAGE__->status( add => 25577, iridium => 'D', 'Iridium 20', 'Decayed 2018-10-22' ); |
1723
|
|
|
|
|
|
|
__PACKAGE__->status( add => 25578, iridium => 'D', 'Iridium 11', 'Decayed 2018-10-22' ); |
1724
|
|
|
|
|
|
|
__PACKAGE__->status( add => 25777, iridium => 'D', 'Iridium 14', 'Decayed 2019-03-15' ); |
1725
|
|
|
|
|
|
|
__PACKAGE__->status( add => 25778, iridium => 'D', 'Iridium 21', 'Decayed 2018-05-24' ); |
1726
|
|
|
|
|
|
|
__PACKAGE__->status( add => 27372, iridium => 'D', 'Iridium 91', 'Decayed 2019-03-13' ); |
1727
|
|
|
|
|
|
|
__PACKAGE__->status( add => 27373, iridium => 'D', 'Iridium 90', 'Decayed 2019-01-23' ); |
1728
|
|
|
|
|
|
|
__PACKAGE__->status( add => 27374, iridium => 'D', 'Iridium 94', 'Decayed 2018-04-18' ); |
1729
|
|
|
|
|
|
|
__PACKAGE__->status( add => 27375, iridium => 'D', 'Iridium 95', 'Decayed 2019-03-25' ); |
1730
|
|
|
|
|
|
|
__PACKAGE__->status( add => 27376, iridium => '-', 'Iridium 96', 'SpaceTrack' ); |
1731
|
|
|
|
|
|
|
__PACKAGE__->status( add => 27450, iridium => 'D', 'Iridium 97', 'Decayed 2019-12-27' ); |
1732
|
|
|
|
|
|
|
__PACKAGE__->status( add => 27451, iridium => 'D', 'Iridium 98', 'Decayed 2018-08-24' ); |
1733
|
|
|
|
|
|
|
|
1734
|
|
|
|
|
|
|
# Summary: |
1735
|
|
|
|
|
|
|
# Operational [+]: 0 |
1736
|
|
|
|
|
|
|
# Spare [S]: 0 |
1737
|
|
|
|
|
|
|
# Tumbling [-]: 32 |
1738
|
|
|
|
|
|
|
# Decayed [D]: 65 |
1739
|
|
|
|
|
|
|
|
1740
|
|
|
|
|
|
|
1; |
1741
|
|
|
|
|
|
|
|
1742
|
|
|
|
|
|
|
__END__ |