File Coverage

xs/gauss.c
Criterion Covered Total %
statement 6 31 19.3
branch 3 10 30.0
condition n/a
subroutine n/a
pod n/a
total 9 41 21.9


line stmt bran cond sub pod time code
1             /* randist/gauss.c
2             *
3             * Copyright (C) 1996, 1997, 1998, 1999, 2000, 2006, 2007 James Theiler, Brian Gough
4             * Copyright (C) 2006 Charles Karney
5             *
6             * This program is free software; you can redistribute it and/or modify
7             * it under the terms of the GNU General Public License as published by
8             * the Free Software Foundation; either version 3 of the License, or (at
9             * your option) any later version.
10             *
11             * This program is distributed in the hope that it will be useful, but
12             * WITHOUT ANY WARRANTY; without even the implied warranty of
13             * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14             * General Public License for more details.
15             *
16             * You should have received a copy of the GNU General Public License
17             * along with this program; if not, write to the Free Software
18             * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
19             */
20              
21             #include <math.h>
22             #include "sandy_rng.h"
23              
24             /* Of the two methods provided below, I think the Polar method is more
25             * efficient, but only when you are actually producing two random
26             * deviates. We don't produce two, because then we'd have to save one
27             * in a static variable for the next call, and that would screws up
28             * re-entrant or threaded code, so we only produce one. This makes
29             * the Ratio method suddenly more appealing.
30             *
31             * [Added by Charles Karney] We use Leva's implementation of the Ratio
32             * method which avoids calling log() nearly all the time and makes the
33             * Ratio method faster than the Polar method (when it produces just one
34             * result per call). Timing per call (gcc -O2 on 866MHz Pentium,
35             * average over 10^8 calls)
36             *
37             * Polar method: 660 ns
38             * Ratio method: 368 ns
39             *
40             */
41              
42             /* Polar (Box-Mueller) method; See Knuth v2, 3rd ed, p122 */
43              
44             double
45 3340           gsl_ran_gaussian (const gsl_rng * r, const double sigma)
46             {
47             double x, y, r2;
48              
49             do
50             {
51             /* choose x,y in uniform square (-1,-1) to (+1,+1) */
52 4184           x = -1 + 2 * gsl_rng_uniform_pos (r);
53 4184           y = -1 + 2 * gsl_rng_uniform_pos (r);
54              
55             /* see if it is in the unit circle */
56 4184           r2 = x * x + y * y;
57             }
58 4184 100         while (r2 > 1.0 || r2 == 0);
    50          
59              
60             /* Box-Muller transform */
61 3340           return sigma * y * sqrt (-2.0 * log (r2) / r2);
62             }
63              
64             /* Ratio method (Kinderman-Monahan); see Knuth v2, 3rd ed, p130.
65             * K+M, ACM Trans Math Software 3 (1977) 257-260.
66             *
67             * [Added by Charles Karney] This is an implementation of Leva's
68             * modifications to the original K+M method; see:
69             * J. L. Leva, ACM Trans Math Software 18 (1992) 449-453 and 454-455. */
70              
71             double
72 0           gsl_ran_gaussian_ratio_method (const gsl_rng * r, const double sigma)
73             {
74             double u, v, x, y, Q;
75 0           const double s = 0.449871; /* Constants from Leva */
76 0           const double t = -0.386595;
77 0           const double a = 0.19600;
78 0           const double b = 0.25472;
79 0           const double r1 = 0.27597;
80 0           const double r2 = 0.27846;
81              
82             do /* This loop is executed 1.369 times on average */
83             {
84             /* Generate a point P = (u, v) uniform in a rectangle enclosing
85             the K+M region v^2 <= - 4 u^2 log(u). */
86              
87             /* u in (0, 1] to avoid singularity at u = 0 */
88 0           u = 1 - gsl_rng_uniform (r);
89              
90             /* v is in the asymmetric interval [-0.5, 0.5). However v = -0.5
91             is rejected in the last part of the while clause. The
92             resulting normal deviate is strictly symmetric about 0
93             (provided that v is symmetric once v = -0.5 is excluded). */
94 0           v = gsl_rng_uniform (r) - 0.5;
95              
96             /* Constant 1.7156 > sqrt(8/e) (for accuracy); but not by too
97             much (for efficiency). */
98 0           v *= 1.7156;
99              
100             /* Compute Leva's quadratic form Q */
101 0           x = u - s;
102 0           y = fabs (v) - t;
103 0           Q = x * x + y * (a * y - b * x);
104              
105             /* Accept P if Q < r1 (Leva) */
106             /* Reject P if Q > r2 (Leva) */
107             /* Accept if v^2 <= -4 u^2 log(u) (K+M) */
108             /* This final test is executed 0.012 times on average. */
109             }
110 0 0         while (Q >= r1 && (Q > r2 || v * v > -4 * u * u * log (u)));
    0          
    0          
111              
112 0           return sigma * (v / u); /* Return slope */
113             }
114              
115             double
116 0           gsl_ran_gaussian_pdf (const double x, const double sigma)
117             {
118 0           double u = x / fabs (sigma);
119 0           double p = (1 / (sqrt (2 * M_PI) * fabs (sigma))) * exp (-u * u / 2);
120 0           return p;
121             }
122              
123             double
124 0           gsl_ran_ugaussian (const gsl_rng * r)
125             {
126 0           return gsl_ran_gaussian (r, 1.0);
127             }
128              
129             double
130 0           gsl_ran_ugaussian_ratio_method (const gsl_rng * r)
131             {
132 0           return gsl_ran_gaussian_ratio_method (r, 1.0);
133             }
134              
135             double
136 0           gsl_ran_ugaussian_pdf (const double x)
137             {
138 0           return gsl_ran_gaussian_pdf (x, 1.0);
139             }
140