line |
stmt |
bran |
cond |
sub |
pod |
time |
code |
1
|
|
|
|
|
|
|
package Algorithm::MasterMind::EvoRank; |
2
|
|
|
|
|
|
|
|
3
|
1
|
|
|
1
|
|
552
|
use warnings; |
|
1
|
|
|
|
|
2
|
|
|
1
|
|
|
|
|
21
|
|
4
|
1
|
|
|
1
|
|
4
|
use strict; |
|
1
|
|
|
|
|
1
|
|
|
1
|
|
|
|
|
22
|
|
5
|
1
|
|
|
1
|
|
4
|
use Carp; |
|
1
|
|
|
|
|
2
|
|
|
1
|
|
|
|
|
46
|
|
6
|
|
|
|
|
|
|
|
7
|
1
|
|
|
|
|
4
|
use lib qw(../../lib ../../../../Algorithm-Evolutionary/lib/ |
8
|
|
|
|
|
|
|
../../Algorithm-Evolutionary/lib/ |
9
|
1
|
|
|
1
|
|
3
|
../../../lib); |
|
1
|
|
|
|
|
2
|
|
10
|
|
|
|
|
|
|
|
11
|
|
|
|
|
|
|
our $VERSION = sprintf "%d.%03d", q$Revision: 1.15 $ =~ /(\d+)\.(\d+)/g; |
12
|
|
|
|
|
|
|
|
13
|
1
|
|
|
1
|
|
286
|
use base 'Algorithm::MasterMind::Evolutionary_Base'; |
|
1
|
|
|
|
|
2
|
|
|
1
|
|
|
|
|
491
|
|
14
|
|
|
|
|
|
|
|
15
|
|
|
|
|
|
|
use Algorithm::MasterMind qw(partitions); |
16
|
|
|
|
|
|
|
|
17
|
|
|
|
|
|
|
use Algorithm::Evolutionary qw(Op::QuadXOver |
18
|
|
|
|
|
|
|
Op::String_Mutation |
19
|
|
|
|
|
|
|
Op::Permutation |
20
|
|
|
|
|
|
|
Op::Crossover |
21
|
|
|
|
|
|
|
Op::Canonical_GA_NN |
22
|
|
|
|
|
|
|
Individual::String ); |
23
|
|
|
|
|
|
|
|
24
|
|
|
|
|
|
|
use Clone::Fast qw(clone); |
25
|
|
|
|
|
|
|
|
26
|
|
|
|
|
|
|
# --------------------------------------------------------------------------- |
27
|
|
|
|
|
|
|
use constant { MAX_CONSISTENT_SET => 20, # This number 20 was computed in NICSO paper, valid for default 4-6 mastermind |
28
|
|
|
|
|
|
|
MAX_GENERATIONS_RESET => 50, |
29
|
|
|
|
|
|
|
MAX_GENERATIONS_EQUAL => 3} ; |
30
|
|
|
|
|
|
|
|
31
|
|
|
|
|
|
|
sub initialize { |
32
|
|
|
|
|
|
|
my $self = shift; |
33
|
|
|
|
|
|
|
my $options = shift; |
34
|
|
|
|
|
|
|
for my $o ( keys %$options ) { |
35
|
|
|
|
|
|
|
$self->{"_$o"} = clone($options->{$o}); |
36
|
|
|
|
|
|
|
} |
37
|
|
|
|
|
|
|
croak "No population" if $self->{'_pop_size'} == 0; |
38
|
|
|
|
|
|
|
# Variation operators |
39
|
|
|
|
|
|
|
my $mutation_rate = $options->{'mutation_rate'} || 1; |
40
|
|
|
|
|
|
|
my $xover_rate = $options->{'xover_rate'} || 2; |
41
|
|
|
|
|
|
|
my $permutation_rate = $options->{'permutation_rate'} || 0; |
42
|
|
|
|
|
|
|
my $max_number_of_consistent = $options->{'consistent_set_card'} || MAX_CONSISTENT_SET; |
43
|
|
|
|
|
|
|
my $m = new Algorithm::Evolutionary::Op::String_Mutation $mutation_rate ; # Rate = 1 |
44
|
|
|
|
|
|
|
my $c = Algorithm::Evolutionary::Op::QuadXOver->new( 1, $xover_rate ); |
45
|
|
|
|
|
|
|
my $operators = [$m,$c]; |
46
|
|
|
|
|
|
|
if ( $permutation_rate > 0 ) { |
47
|
|
|
|
|
|
|
my $p = new Algorithm::Evolutionary::Op::Permutation $permutation_rate; |
48
|
|
|
|
|
|
|
push @$operators, $p; |
49
|
|
|
|
|
|
|
} |
50
|
|
|
|
|
|
|
if (! $self->{'_ga'} ) { # Not given as an option |
51
|
|
|
|
|
|
|
$self->{'_ga'} = new Algorithm::Evolutionary::Op::Canonical_GA_NN( $options->{'replacement_rate'}, |
52
|
|
|
|
|
|
|
$operators ); |
53
|
|
|
|
|
|
|
} |
54
|
|
|
|
|
|
|
|
55
|
|
|
|
|
|
|
if (!$self->{'_distance'}) { |
56
|
|
|
|
|
|
|
$self->{'_distance'} = 'distance_taxicab'; |
57
|
|
|
|
|
|
|
} |
58
|
|
|
|
|
|
|
$self->{'_max_consistent'} = $max_number_of_consistent; |
59
|
|
|
|
|
|
|
} |
60
|
|
|
|
|
|
|
|
61
|
|
|
|
|
|
|
sub compute_fitness { |
62
|
|
|
|
|
|
|
my $pop = shift; |
63
|
|
|
|
|
|
|
#Compute min |
64
|
|
|
|
|
|
|
my $min_distance = 0; |
65
|
|
|
|
|
|
|
for my $p ( @$pop ) { |
66
|
|
|
|
|
|
|
$min_distance = ( $p->{'_distance'} < $min_distance )? |
67
|
|
|
|
|
|
|
$p->{'_distance'}: |
68
|
|
|
|
|
|
|
$min_distance; |
69
|
|
|
|
|
|
|
} |
70
|
|
|
|
|
|
|
|
71
|
|
|
|
|
|
|
for my $p ( @$pop ) { |
72
|
|
|
|
|
|
|
$p->Fitness( $p->{'_distance'}+ |
73
|
|
|
|
|
|
|
($p->{'_partitions'}?$p->{'_partitions'}:0)- |
74
|
|
|
|
|
|
|
$min_distance + 1); |
75
|
|
|
|
|
|
|
} |
76
|
|
|
|
|
|
|
} |
77
|
|
|
|
|
|
|
|
78
|
|
|
|
|
|
|
sub issue_next { |
79
|
|
|
|
|
|
|
my $self = shift; |
80
|
|
|
|
|
|
|
my $rules = $self->number_of_rules(); |
81
|
|
|
|
|
|
|
my @alphabet = @{$self->{'_alphabet'}}; |
82
|
|
|
|
|
|
|
my $length = $self->{'_length'}; |
83
|
|
|
|
|
|
|
my $pop = $self->{'_pop'}; |
84
|
|
|
|
|
|
|
my $ga = $self->{'_ga'}; |
85
|
|
|
|
|
|
|
my $max_number_of_consistent = $self->{'_max_consistent'}; |
86
|
|
|
|
|
|
|
|
87
|
|
|
|
|
|
|
#Recalculate distances, new game |
88
|
|
|
|
|
|
|
my (%consistent ); |
89
|
|
|
|
|
|
|
my $partitions; |
90
|
|
|
|
|
|
|
my $distance = $self->{'_distance'}; |
91
|
|
|
|
|
|
|
for my $p ( @$pop ) { |
92
|
|
|
|
|
|
|
($p->{'_distance'}, $p->{'_matches'}) = @{$self->$distance( $p->{'_str'} )}; |
93
|
|
|
|
|
|
|
# ($p->{'_distance'}, $p->{'_matches'}) = @{$self->distance( $p )}; |
94
|
|
|
|
|
|
|
$consistent{$p->{'_str'}} = $p if ($p->{'_matches'} == $rules); |
95
|
|
|
|
|
|
|
} |
96
|
|
|
|
|
|
|
|
97
|
|
|
|
|
|
|
my $number_of_consistent = keys %consistent; |
98
|
|
|
|
|
|
|
if ( $number_of_consistent > 1 ) { |
99
|
|
|
|
|
|
|
$partitions = partitions( keys %consistent ); |
100
|
|
|
|
|
|
|
for my $c ( keys %$partitions ) { |
101
|
|
|
|
|
|
|
$consistent{$c}->{'_partitions'} = scalar (keys %{$partitions->{$c}}); |
102
|
|
|
|
|
|
|
} |
103
|
|
|
|
|
|
|
} |
104
|
|
|
|
|
|
|
my $generations_equal = 0; |
105
|
|
|
|
|
|
|
my $this_number_of_consistent = $number_of_consistent; |
106
|
|
|
|
|
|
|
|
107
|
|
|
|
|
|
|
while ( $this_number_of_consistent < $max_number_of_consistent ) { |
108
|
|
|
|
|
|
|
|
109
|
|
|
|
|
|
|
#Compute fitness |
110
|
|
|
|
|
|
|
compute_fitness( $pop ); |
111
|
|
|
|
|
|
|
# print join( " - ", map( $_->{'_fitness'}, @$pop )), "\n"; |
112
|
|
|
|
|
|
|
|
113
|
|
|
|
|
|
|
#Apply GA |
114
|
|
|
|
|
|
|
$ga->apply( $pop ); |
115
|
|
|
|
|
|
|
|
116
|
|
|
|
|
|
|
#Compute new distances |
117
|
|
|
|
|
|
|
%consistent = (); # Empty to avoid problems |
118
|
|
|
|
|
|
|
for my $p ( @$pop ) { |
119
|
|
|
|
|
|
|
($p->{'_distance'}, $p->{'_matches'}) = @{$self->$distance( $p->{'_str'} )}; |
120
|
|
|
|
|
|
|
# ($p->{'_distance'}, $p->{'_matches'}) = @{$self->distance( $p )}; |
121
|
|
|
|
|
|
|
if ($p->{'_matches'} == $rules) { |
122
|
|
|
|
|
|
|
$consistent{$p->{'_str'}} = $p; |
123
|
|
|
|
|
|
|
# print $p->{'_str'}, " -> ", $p->{'_distance'}, " - "; |
124
|
|
|
|
|
|
|
} else { |
125
|
|
|
|
|
|
|
$p->{'_partitions'} = 0; |
126
|
|
|
|
|
|
|
} |
127
|
|
|
|
|
|
|
} |
128
|
|
|
|
|
|
|
|
129
|
|
|
|
|
|
|
#Check termination again, and reset |
130
|
|
|
|
|
|
|
if ($generations_equal == MAX_GENERATIONS_RESET ) { |
131
|
|
|
|
|
|
|
$ga->reset( $pop ); |
132
|
|
|
|
|
|
|
for my $p ( @$pop ) { |
133
|
|
|
|
|
|
|
($p->{'_distance'}, $p->{'_matches'}) = @{$self->$distance( $p->{'_str'} )}; |
134
|
|
|
|
|
|
|
# ($p->{'_distance'}, $p->{'_matches'}) = @{$self->distance( $p )}; |
135
|
|
|
|
|
|
|
} |
136
|
|
|
|
|
|
|
$generations_equal = 0; |
137
|
|
|
|
|
|
|
} |
138
|
|
|
|
|
|
|
|
139
|
|
|
|
|
|
|
#Check termination conditions |
140
|
|
|
|
|
|
|
$this_number_of_consistent = keys %consistent; |
141
|
|
|
|
|
|
|
if ( $this_number_of_consistent == $number_of_consistent ) { |
142
|
|
|
|
|
|
|
$generations_equal++; |
143
|
|
|
|
|
|
|
} else { |
144
|
|
|
|
|
|
|
$generations_equal = 0; |
145
|
|
|
|
|
|
|
$number_of_consistent = $this_number_of_consistent; |
146
|
|
|
|
|
|
|
# Compute number of partitions |
147
|
|
|
|
|
|
|
if ( $number_of_consistent > 1 ) { |
148
|
|
|
|
|
|
|
$partitions = partitions( keys %consistent ); |
149
|
|
|
|
|
|
|
for my $c ( keys %$partitions ) { |
150
|
|
|
|
|
|
|
$consistent{$c}->{'_partitions'} = scalar (keys %{$partitions->{$c}}); |
151
|
|
|
|
|
|
|
} |
152
|
|
|
|
|
|
|
} |
153
|
|
|
|
|
|
|
} |
154
|
|
|
|
|
|
|
last if ( $generations_equal >= MAX_GENERATIONS_EQUAL ) && ( $this_number_of_consistent >= 1 ) ; |
155
|
|
|
|
|
|
|
# print "G $generations_equal $this_number_of_consistent \n"; |
156
|
|
|
|
|
|
|
} |
157
|
|
|
|
|
|
|
|
158
|
|
|
|
|
|
|
$self->{'_consistent'} = \%consistent; #This mainly for outside info |
159
|
|
|
|
|
|
|
# print "After GA combinations ", join( " ", keys %consistent ), "\n"; |
160
|
|
|
|
|
|
|
# print "Consistent + => ", join( "-", sort keys %consistent ), "\n\n"; |
161
|
|
|
|
|
|
|
if ( $this_number_of_consistent > 1 ) { |
162
|
|
|
|
|
|
|
# print "Consistent ", scalar keys %consistent, "\n"; |
163
|
|
|
|
|
|
|
#Use whatever we've got to compute number of partitions |
164
|
|
|
|
|
|
|
# my $partitions = partitions( keys %consistent ); |
165
|
|
|
|
|
|
|
|
166
|
|
|
|
|
|
|
my $max_partitions = 0; |
167
|
|
|
|
|
|
|
my %max_c; |
168
|
|
|
|
|
|
|
for my $c ( keys %$partitions ) { |
169
|
|
|
|
|
|
|
my $this_max = keys %{$partitions->{$c}}; |
170
|
|
|
|
|
|
|
$max_c{$c} = $this_max; |
171
|
|
|
|
|
|
|
if ( $this_max > $max_partitions ) { |
172
|
|
|
|
|
|
|
$max_partitions = $this_max; |
173
|
|
|
|
|
|
|
} |
174
|
|
|
|
|
|
|
} |
175
|
|
|
|
|
|
|
# Find all partitions with that max |
176
|
|
|
|
|
|
|
my @max_c = grep( $max_c{$_} == $max_partitions, keys %max_c ); |
177
|
|
|
|
|
|
|
# Break ties |
178
|
|
|
|
|
|
|
my $string = $max_c[ rand( @max_c )]; |
179
|
|
|
|
|
|
|
# Obtain next |
180
|
|
|
|
|
|
|
return $self->{'_last'} = $string; |
181
|
|
|
|
|
|
|
} else { |
182
|
|
|
|
|
|
|
return $self->{'_last'} = (keys %consistent)[0]; |
183
|
|
|
|
|
|
|
} |
184
|
|
|
|
|
|
|
|
185
|
|
|
|
|
|
|
} |
186
|
|
|
|
|
|
|
|
187
|
|
|
|
|
|
|
"some blacks, 0 white"; # Magic true value required at end of module |
188
|
|
|
|
|
|
|
|
189
|
|
|
|
|
|
|
__END__ |