line |
stmt |
bran |
cond |
sub |
pod |
time |
code |
1
|
1
|
|
|
1
|
|
662
|
use strict; #-*-cperl-*- |
|
1
|
|
|
|
|
2
|
|
|
1
|
|
|
|
|
38
|
|
2
|
1
|
|
|
1
|
|
4
|
use warnings; |
|
1
|
|
|
|
|
1
|
|
|
1
|
|
|
|
|
33
|
|
3
|
|
|
|
|
|
|
|
4
|
1
|
|
|
1
|
|
3
|
use lib qw(../../.. ../.. ); #Emacs does not allow me to save!!! |
|
1
|
|
|
|
|
2
|
|
|
1
|
|
|
|
|
7
|
|
5
|
|
|
|
|
|
|
|
6
|
|
|
|
|
|
|
=head1 NAME |
7
|
|
|
|
|
|
|
|
8
|
|
|
|
|
|
|
Algorithm::Evolutionary::Run - Class for setting up an experiment with algorithms and population |
9
|
|
|
|
|
|
|
|
10
|
|
|
|
|
|
|
=head1 SYNOPSIS |
11
|
|
|
|
|
|
|
|
12
|
|
|
|
|
|
|
use Algorithm::Evolutionary::Run; |
13
|
|
|
|
|
|
|
|
14
|
|
|
|
|
|
|
my $algorithm = new Algorithm::Evolutionary::Run 'conf.yaml'; |
15
|
|
|
|
|
|
|
#or |
16
|
|
|
|
|
|
|
my $conf = { |
17
|
|
|
|
|
|
|
'fitness' => { |
18
|
|
|
|
|
|
|
'class' => 'MMDP' |
19
|
|
|
|
|
|
|
}, |
20
|
|
|
|
|
|
|
'crossover' => { |
21
|
|
|
|
|
|
|
'priority' => '3', |
22
|
|
|
|
|
|
|
'points' => '2' |
23
|
|
|
|
|
|
|
}, |
24
|
|
|
|
|
|
|
'max_generations' => '1000', |
25
|
|
|
|
|
|
|
'mutation' => { |
26
|
|
|
|
|
|
|
'priority' => '2', |
27
|
|
|
|
|
|
|
'rate' => '0.1' |
28
|
|
|
|
|
|
|
}, |
29
|
|
|
|
|
|
|
'length' => '120', |
30
|
|
|
|
|
|
|
'max_fitness' => '20', |
31
|
|
|
|
|
|
|
'pop_size' => '1024', |
32
|
|
|
|
|
|
|
'selection_rate' => '0.1' |
33
|
|
|
|
|
|
|
}; |
34
|
|
|
|
|
|
|
|
35
|
|
|
|
|
|
|
my $algorithm = new Algorithm::Evolutionary::Run $conf; |
36
|
|
|
|
|
|
|
|
37
|
|
|
|
|
|
|
#Run it to the end |
38
|
|
|
|
|
|
|
$algorithm->run(); |
39
|
|
|
|
|
|
|
|
40
|
|
|
|
|
|
|
#Print results |
41
|
|
|
|
|
|
|
$algorithm->results(); |
42
|
|
|
|
|
|
|
|
43
|
|
|
|
|
|
|
#A single step |
44
|
|
|
|
|
|
|
$algorithm->step(); |
45
|
|
|
|
|
|
|
|
46
|
|
|
|
|
|
|
=head1 DESCRIPTION |
47
|
|
|
|
|
|
|
|
48
|
|
|
|
|
|
|
This is a no-fuss class to have everything needed to run an algorithm |
49
|
|
|
|
|
|
|
in a single place, although for the time being it's reduced to |
50
|
|
|
|
|
|
|
fitness functions in the A::E::F namespace, and binary |
51
|
|
|
|
|
|
|
strings. Mostly for demo purposes, but can be an example of class |
52
|
|
|
|
|
|
|
for other stuff. |
53
|
|
|
|
|
|
|
|
54
|
|
|
|
|
|
|
=cut |
55
|
|
|
|
|
|
|
|
56
|
|
|
|
|
|
|
=head1 METHODS |
57
|
|
|
|
|
|
|
|
58
|
|
|
|
|
|
|
=cut |
59
|
|
|
|
|
|
|
|
60
|
|
|
|
|
|
|
package Algorithm::Evolutionary::Run; |
61
|
|
|
|
|
|
|
|
62
|
1
|
|
|
|
|
4
|
use Algorithm::Evolutionary qw(Individual::BitString Op::Easy Op::CanonicalGA |
63
|
|
|
|
|
|
|
Op::Bitflip Op::Crossover |
64
|
1
|
|
|
1
|
|
542
|
Op::Gene_Boundary_Crossover); |
|
1
|
|
|
|
|
2
|
|
65
|
|
|
|
|
|
|
|
66
|
|
|
|
|
|
|
use Algorithm::Evolutionary::Utils qw(hamming); |
67
|
|
|
|
|
|
|
|
68
|
|
|
|
|
|
|
our $VERSION = '3.2' ; |
69
|
|
|
|
|
|
|
|
70
|
|
|
|
|
|
|
use Carp; |
71
|
|
|
|
|
|
|
use YAML qw(LoadFile); |
72
|
|
|
|
|
|
|
use Time::HiRes qw( gettimeofday tv_interval); |
73
|
|
|
|
|
|
|
|
74
|
|
|
|
|
|
|
=head2 new( $algorithm_description ) |
75
|
|
|
|
|
|
|
|
76
|
|
|
|
|
|
|
Creates the whole stuff needed to run an algorithm. Can be called from a hash with t |
77
|
|
|
|
|
|
|
options, as per the example. All of them are compulsory. See also the C subdir for examples of the YAML conf file. |
78
|
|
|
|
|
|
|
|
79
|
|
|
|
|
|
|
=cut |
80
|
|
|
|
|
|
|
|
81
|
|
|
|
|
|
|
sub new { |
82
|
|
|
|
|
|
|
my $class = shift; |
83
|
|
|
|
|
|
|
|
84
|
|
|
|
|
|
|
my $param = shift; |
85
|
|
|
|
|
|
|
my $fitness_object = shift; # Can be undef |
86
|
|
|
|
|
|
|
my $self; |
87
|
|
|
|
|
|
|
if ( ! ref $param ) { #scalar => read yaml file |
88
|
|
|
|
|
|
|
$self = LoadFile( $param ) || carp "Can't load $param: is it a file?\n"; |
89
|
|
|
|
|
|
|
} else { #It's a hashref |
90
|
|
|
|
|
|
|
$self = $param; |
91
|
|
|
|
|
|
|
} |
92
|
|
|
|
|
|
|
|
93
|
|
|
|
|
|
|
#----------------------------------------------------------# |
94
|
|
|
|
|
|
|
# Variation operators |
95
|
|
|
|
|
|
|
my $m = new Algorithm::Evolutionary::Op::Bitflip( 1, $self->{'mutation'}->{'priority'} ); |
96
|
|
|
|
|
|
|
my $c; |
97
|
|
|
|
|
|
|
#Big hack here |
98
|
|
|
|
|
|
|
if ( $self->{'crossover'} ) { |
99
|
|
|
|
|
|
|
$c = new Algorithm::Evolutionary::Op::Crossover($self->{'crossover'}->{'points'}, $self->{'crossover'}->{'priority'} ); |
100
|
|
|
|
|
|
|
} elsif ($self->{'gene_boundary_crossover'}) { |
101
|
|
|
|
|
|
|
$c = new Algorithm::Evolutionary::Op::Gene_Boundary_Crossover($self->{'gene_boundary_crossover'}->{'points'}, |
102
|
|
|
|
|
|
|
$self->{'gene_boundary_crossover'}->{'gene_size'} , |
103
|
|
|
|
|
|
|
$self->{'gene_boundary_crossover'}->{'priority'} ); |
104
|
|
|
|
|
|
|
} elsif ($self->{'quad_xover'} ) { |
105
|
|
|
|
|
|
|
$c = new Algorithm::Evolutionary::Op::QuadXOver($self->{'crossover'}->{'points'}, $self->{'crossover'}->{'priority'} ); |
106
|
|
|
|
|
|
|
} |
107
|
|
|
|
|
|
|
|
108
|
|
|
|
|
|
|
# Fitness function |
109
|
|
|
|
|
|
|
if ( !$fitness_object ) { |
110
|
|
|
|
|
|
|
my $fitness_class = "Algorithm::Evolutionary::Fitness::".$self->{'fitness'}->{'class'}; |
111
|
|
|
|
|
|
|
eval "require $fitness_class" || die "Can't load $fitness_class: $@\n"; |
112
|
|
|
|
|
|
|
my @params = $self->{'fitness'}->{'params'}? @{$self->{'fitness'}->{'params'}} : (); |
113
|
|
|
|
|
|
|
$fitness_object = eval $fitness_class."->new( \@params )" || die "Can't instantiate $fitness_class: $@\n"; |
114
|
|
|
|
|
|
|
} |
115
|
|
|
|
|
|
|
$self->{'_fitness'} = $fitness_object; |
116
|
|
|
|
|
|
|
|
117
|
|
|
|
|
|
|
#----------------------------------------------------------# |
118
|
|
|
|
|
|
|
#Usamos estos operadores para definir una generación del algoritmo. Lo cual |
119
|
|
|
|
|
|
|
# no es realmente necesario ya que este algoritmo define ambos operadores por |
120
|
|
|
|
|
|
|
# defecto. Los parámetros son la función de fitness, la tasa de selección y los |
121
|
|
|
|
|
|
|
# operadores de variación. |
122
|
|
|
|
|
|
|
my $algorithm_class = "Algorithm::Evolutionary::Op::".($self->{'algorithm'}?$self->{'algorithm'}:'Easy'); |
123
|
|
|
|
|
|
|
my $generation = eval $algorithm_class."->new( \$fitness_object , \$self->{'selection_rate'} , [\$m, \$c] )" |
124
|
|
|
|
|
|
|
|| die "Can't instantiate $algorithm_class: $@\n";; |
125
|
|
|
|
|
|
|
|
126
|
|
|
|
|
|
|
#Time |
127
|
|
|
|
|
|
|
my $inicioTiempo = [gettimeofday()]; |
128
|
|
|
|
|
|
|
|
129
|
|
|
|
|
|
|
#----------------------------------------------------------# |
130
|
|
|
|
|
|
|
bless $self, $class; |
131
|
|
|
|
|
|
|
$self->reset_population; |
132
|
|
|
|
|
|
|
for ( @{$self->{'_population'}} ) { |
133
|
|
|
|
|
|
|
if ( !defined $_->Fitness() ) { |
134
|
|
|
|
|
|
|
$_->evaluate( $fitness_object ); |
135
|
|
|
|
|
|
|
} |
136
|
|
|
|
|
|
|
} |
137
|
|
|
|
|
|
|
|
138
|
|
|
|
|
|
|
$self->{'_generation'} = $generation; |
139
|
|
|
|
|
|
|
$self->{'_start_time'} = $inicioTiempo; |
140
|
|
|
|
|
|
|
return $self; |
141
|
|
|
|
|
|
|
} |
142
|
|
|
|
|
|
|
|
143
|
|
|
|
|
|
|
=head2 population_size( $new_size ) |
144
|
|
|
|
|
|
|
|
145
|
|
|
|
|
|
|
Resets the population size to the C<$new_size>. It does not do |
146
|
|
|
|
|
|
|
anything to the actual population, just resests the number. You should |
147
|
|
|
|
|
|
|
do a C afterwards. |
148
|
|
|
|
|
|
|
|
149
|
|
|
|
|
|
|
=cut |
150
|
|
|
|
|
|
|
|
151
|
|
|
|
|
|
|
sub population_size { |
152
|
|
|
|
|
|
|
my $self = shift; |
153
|
|
|
|
|
|
|
my $new_size = shift || croak "Too small!"; |
154
|
|
|
|
|
|
|
$self->{'pop_size'} = $new_size; |
155
|
|
|
|
|
|
|
} |
156
|
|
|
|
|
|
|
|
157
|
|
|
|
|
|
|
|
158
|
|
|
|
|
|
|
=head2 reset_population() |
159
|
|
|
|
|
|
|
|
160
|
|
|
|
|
|
|
Resets population, creating a new one; resets fitness counter to 0 |
161
|
|
|
|
|
|
|
|
162
|
|
|
|
|
|
|
=cut |
163
|
|
|
|
|
|
|
|
164
|
|
|
|
|
|
|
sub reset_population { |
165
|
|
|
|
|
|
|
my $self = shift; |
166
|
|
|
|
|
|
|
#Initial population |
167
|
|
|
|
|
|
|
my @pop; |
168
|
|
|
|
|
|
|
|
169
|
|
|
|
|
|
|
#Creamos $popSize individuos |
170
|
|
|
|
|
|
|
my $bits = $self->{'length'}; |
171
|
|
|
|
|
|
|
for ( 1..$self->{'pop_size'} ) { |
172
|
|
|
|
|
|
|
my $indi = Algorithm::Evolutionary::Individual::BitString->new( $bits ); |
173
|
|
|
|
|
|
|
$indi->evaluate( $self->{'_fitness'} ); |
174
|
|
|
|
|
|
|
push( @pop, $indi ); |
175
|
|
|
|
|
|
|
} |
176
|
|
|
|
|
|
|
$self->{'_population'} = \@pop; |
177
|
|
|
|
|
|
|
$self->{'_fitness'}->reset_evaluations; |
178
|
|
|
|
|
|
|
} |
179
|
|
|
|
|
|
|
|
180
|
|
|
|
|
|
|
=head2 step() |
181
|
|
|
|
|
|
|
|
182
|
|
|
|
|
|
|
Runs a single step of the algorithm, that is, a single generation |
183
|
|
|
|
|
|
|
|
184
|
|
|
|
|
|
|
=cut |
185
|
|
|
|
|
|
|
|
186
|
|
|
|
|
|
|
sub step { |
187
|
|
|
|
|
|
|
my $self = shift; |
188
|
|
|
|
|
|
|
$self->{'_generation'}->apply( $self->{'_population'} ); |
189
|
|
|
|
|
|
|
$self->{'_counter'}++; |
190
|
|
|
|
|
|
|
} |
191
|
|
|
|
|
|
|
|
192
|
|
|
|
|
|
|
=head2 run() |
193
|
|
|
|
|
|
|
|
194
|
|
|
|
|
|
|
Applies the different operators in the order that they appear; returns the population |
195
|
|
|
|
|
|
|
as a ref-to-array. |
196
|
|
|
|
|
|
|
|
197
|
|
|
|
|
|
|
=cut |
198
|
|
|
|
|
|
|
|
199
|
|
|
|
|
|
|
sub run { |
200
|
|
|
|
|
|
|
my $self = shift; |
201
|
|
|
|
|
|
|
$self->{'_counter'} = 0; |
202
|
|
|
|
|
|
|
do { |
203
|
|
|
|
|
|
|
$self->step(); |
204
|
|
|
|
|
|
|
|
205
|
|
|
|
|
|
|
} while( ($self->{'_counter'} < $self->{'max_generations'}) |
206
|
|
|
|
|
|
|
&& ($self->{'_population'}->[0]->Fitness() < $self->{'max_fitness'})); |
207
|
|
|
|
|
|
|
|
208
|
|
|
|
|
|
|
} |
209
|
|
|
|
|
|
|
|
210
|
|
|
|
|
|
|
=head2 random_member() |
211
|
|
|
|
|
|
|
|
212
|
|
|
|
|
|
|
Returns a random guy from the population |
213
|
|
|
|
|
|
|
|
214
|
|
|
|
|
|
|
=cut |
215
|
|
|
|
|
|
|
|
216
|
|
|
|
|
|
|
sub random_member { |
217
|
|
|
|
|
|
|
my $self = shift; |
218
|
|
|
|
|
|
|
return $self->{'_population'}->[rand( @{$self->{'_population'}} )]; |
219
|
|
|
|
|
|
|
} |
220
|
|
|
|
|
|
|
|
221
|
|
|
|
|
|
|
=head2 results() |
222
|
|
|
|
|
|
|
|
223
|
|
|
|
|
|
|
Returns results in a hash that contains the best, total time so far |
224
|
|
|
|
|
|
|
and the number of evaluations. |
225
|
|
|
|
|
|
|
|
226
|
|
|
|
|
|
|
=cut |
227
|
|
|
|
|
|
|
|
228
|
|
|
|
|
|
|
sub results { |
229
|
|
|
|
|
|
|
my $self = shift; |
230
|
|
|
|
|
|
|
my $population_size = scalar @{$self->{'_population'}}; |
231
|
|
|
|
|
|
|
my $last_good_pos = $population_size*(1-$self->{'selection_rate'}); |
232
|
|
|
|
|
|
|
my $results = { best => $self->{'_population'}->[0], |
233
|
|
|
|
|
|
|
median => $self->{'_population'}->[ $population_size / 2], |
234
|
|
|
|
|
|
|
last_good => $self->{'_population'}->[ $last_good_pos ], |
235
|
|
|
|
|
|
|
time => tv_interval( $self->{'_start_time'} ), |
236
|
|
|
|
|
|
|
evaluations => $self->{'_fitness'}->evaluations() }; |
237
|
|
|
|
|
|
|
return $results; |
238
|
|
|
|
|
|
|
|
239
|
|
|
|
|
|
|
} |
240
|
|
|
|
|
|
|
|
241
|
|
|
|
|
|
|
=head2 evaluated_population() |
242
|
|
|
|
|
|
|
|
243
|
|
|
|
|
|
|
Returns the portion of population that has been evaluated (all but the new ones) |
244
|
|
|
|
|
|
|
|
245
|
|
|
|
|
|
|
=cut |
246
|
|
|
|
|
|
|
|
247
|
|
|
|
|
|
|
sub evaluated_population { |
248
|
|
|
|
|
|
|
my $self = shift; |
249
|
|
|
|
|
|
|
my $population_size = scalar @{$self->{'_population'}}; |
250
|
|
|
|
|
|
|
my $last_good_pos = $population_size*(1-$self->{'selection_rate'}) - 1; |
251
|
|
|
|
|
|
|
return @{$self->{'_population'}}[0..$last_good_pos]; |
252
|
|
|
|
|
|
|
} |
253
|
|
|
|
|
|
|
|
254
|
|
|
|
|
|
|
|
255
|
|
|
|
|
|
|
=head2 compute_average_distance( $individual ) |
256
|
|
|
|
|
|
|
|
257
|
|
|
|
|
|
|
Computes the average hamming distance to the population |
258
|
|
|
|
|
|
|
|
259
|
|
|
|
|
|
|
=cut |
260
|
|
|
|
|
|
|
|
261
|
|
|
|
|
|
|
sub compute_average_distance { |
262
|
|
|
|
|
|
|
my $self = shift; |
263
|
|
|
|
|
|
|
my $other = shift || croak "No other\n"; |
264
|
|
|
|
|
|
|
my $distance; |
265
|
|
|
|
|
|
|
for my $p ( @{$self->{'_population'}} ) { |
266
|
|
|
|
|
|
|
$distance += hamming( $p->{'_str'}, $other->{'_str'} ); |
267
|
|
|
|
|
|
|
} |
268
|
|
|
|
|
|
|
$distance /= @{$self->{'_population'}}; |
269
|
|
|
|
|
|
|
} |
270
|
|
|
|
|
|
|
|
271
|
|
|
|
|
|
|
=head2 compute_min_distance( $individual ) |
272
|
|
|
|
|
|
|
|
273
|
|
|
|
|
|
|
Computes the average hamming distance to the population |
274
|
|
|
|
|
|
|
|
275
|
|
|
|
|
|
|
=cut |
276
|
|
|
|
|
|
|
|
277
|
|
|
|
|
|
|
sub compute_min_distance { |
278
|
|
|
|
|
|
|
my $self = shift; |
279
|
|
|
|
|
|
|
my $other = shift || croak "No other\n"; |
280
|
|
|
|
|
|
|
my $min_distance = length( $self->{'_population'}->[0]->{'_str'} ); |
281
|
|
|
|
|
|
|
for my $p ( @{$self->{'_population'}} ) { |
282
|
|
|
|
|
|
|
my $this_distance = hamming( $p->{'_str'}, $other->{'_str'} ); |
283
|
|
|
|
|
|
|
$min_distance = ( $this_distance < $min_distance )?$this_distance:$min_distance; |
284
|
|
|
|
|
|
|
} |
285
|
|
|
|
|
|
|
return $min_distance; |
286
|
|
|
|
|
|
|
|
287
|
|
|
|
|
|
|
} |
288
|
|
|
|
|
|
|
|
289
|
|
|
|
|
|
|
=head1 Copyright |
290
|
|
|
|
|
|
|
|
291
|
|
|
|
|
|
|
This file is released under the GPL. See the LICENSE file included in this distribution, |
292
|
|
|
|
|
|
|
or go to http://www.fsf.org/licenses/gpl.txt |
293
|
|
|
|
|
|
|
|
294
|
|
|
|
|
|
|
=cut |
295
|
|
|
|
|
|
|
|
296
|
|
|
|
|
|
|
"Still there?"; |