|  line  | 
 stmt  | 
 bran  | 
 cond  | 
 sub  | 
 pod  | 
 time  | 
 code  | 
| 
1
 | 
1
 | 
 
 | 
 
 | 
  
1
  
 | 
 
 | 
808
 | 
 use strict; #-*-cperl-*-  | 
| 
 
 | 
1
 | 
 
 | 
 
 | 
 
 | 
 
 | 
2
 | 
    | 
| 
 
 | 
1
 | 
 
 | 
 
 | 
 
 | 
 
 | 
43
 | 
    | 
| 
2
 | 
1
 | 
 
 | 
 
 | 
  
1
  
 | 
 
 | 
5
 | 
 use warnings;  | 
| 
 
 | 
1
 | 
 
 | 
 
 | 
 
 | 
 
 | 
2
 | 
    | 
| 
 
 | 
1
 | 
 
 | 
 
 | 
 
 | 
 
 | 
39
 | 
    | 
| 
3
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
4
 | 
1
 | 
 
 | 
 
 | 
  
1
  
 | 
 
 | 
6
 | 
 use lib qw(../../.. ../.. ); #Emacs does not allow me to save!!!  | 
| 
 
 | 
1
 | 
 
 | 
 
 | 
 
 | 
 
 | 
2
 | 
    | 
| 
 
 | 
1
 | 
 
 | 
 
 | 
 
 | 
 
 | 
9
 | 
    | 
| 
5
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
6
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 =head1 NAME  | 
| 
7
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
8
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 Algorithm::Evolutionary::Run - Class for setting up an experiment with algorithms and population  | 
| 
9
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
                    | 
| 
10
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 =head1 SYNOPSIS  | 
| 
11
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
     | 
| 
12
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   use Algorithm::Evolutionary::Run;  | 
| 
13
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
14
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   my $algorithm = new Algorithm::Evolutionary::Run 'conf.yaml';  | 
| 
15
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   #or  | 
| 
16
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   my $conf = {  | 
| 
17
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
     'fitness' => {  | 
| 
18
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
       'class' => 'MMDP'  | 
| 
19
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
     },  | 
| 
20
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
     'crossover' => {  | 
| 
21
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
       'priority' => '3',  | 
| 
22
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
       'points' => '2'  | 
| 
23
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
      },  | 
| 
24
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
     'max_generations' => '1000',  | 
| 
25
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
     'mutation' => {  | 
| 
26
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
       'priority' => '2',  | 
| 
27
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
       'rate' => '0.1'  | 
| 
28
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
     },  | 
| 
29
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
     'length' => '120',  | 
| 
30
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
     'max_fitness' => '20',  | 
| 
31
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
     'pop_size' => '1024',  | 
| 
32
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
     'selection_rate' => '0.1'  | 
| 
33
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   };  | 
| 
34
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
35
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   my $algorithm = new Algorithm::Evolutionary::Run $conf;  | 
| 
36
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
37
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   #Run it to the end  | 
| 
38
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   $algorithm->run();  | 
| 
39
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
     | 
| 
40
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   #Print results  | 
| 
41
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   $algorithm->results();  | 
| 
42
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
     | 
| 
43
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   #A single step  | 
| 
44
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   $algorithm->step();  | 
| 
45
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
     | 
| 
46
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 =head1 DESCRIPTION  | 
| 
47
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
48
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 This is a no-fuss class to have everything needed to run an algorithm  | 
| 
49
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
     in a single place, although for the time being it's reduced to  | 
| 
50
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
     fitness functions in the A::E::F namespace, and binary  | 
| 
51
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
     strings. Mostly for demo purposes, but can be an example of class  | 
| 
52
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
     for other stuff.  | 
| 
53
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
54
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 =cut  | 
| 
55
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
56
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 =head1 METHODS  | 
| 
57
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
58
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 =cut  | 
| 
59
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
60
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 package Algorithm::Evolutionary::Run;  | 
| 
61
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
62
 | 
1
 | 
 
 | 
 
 | 
 
 | 
 
 | 
6
 | 
 use Algorithm::Evolutionary qw(Individual::BitString Op::Easy Op::CanonicalGA   | 
| 
63
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 			       Op::Bitflip Op::Crossover   | 
| 
64
 | 
1
 | 
 
 | 
 
 | 
  
1
  
 | 
 
 | 
762
 | 
 			       Op::Gene_Boundary_Crossover);  | 
| 
 
 | 
1
 | 
 
 | 
 
 | 
 
 | 
 
 | 
4
 | 
    | 
| 
65
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
66
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 use Algorithm::Evolutionary::Utils qw(hamming);  | 
| 
67
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
68
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 our ($VERSION) = ( '$Revision: 3.2 $ ' =~ /(\d+\.\d+)/ ) ;  | 
| 
69
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
70
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 use Carp;  | 
| 
71
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 use YAML qw(LoadFile);  | 
| 
72
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 use Time::HiRes qw( gettimeofday tv_interval);  | 
| 
73
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
74
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 =head2 new( $algorithm_description )  | 
| 
75
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
76
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 Creates the whole stuff needed to run an algorithm. Can be called from a hash with t   | 
| 
77
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    options, as per the example. All of them are compulsory. See also the C subdir for examples of the YAML conf file.   | 
| 
78
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
79
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 =cut  | 
| 
80
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
81
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 sub new {  | 
| 
82
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   my $class = shift;  | 
| 
83
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
84
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   my $param = shift;  | 
| 
85
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   my $fitness_object = shift; # Can be undef  | 
| 
86
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   my $self;  | 
| 
87
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   if ( ! ref $param ) { #scalar => read yaml file  | 
| 
88
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
       $self = LoadFile( $param ) || carp "Can't load $param: is it a file?\n";  | 
| 
89
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   } else { #It's a hashref  | 
| 
90
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
       $self = $param;  | 
| 
91
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   }  | 
| 
92
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
     | 
| 
93
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 #----------------------------------------------------------#  | 
| 
94
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 # Variation operators  | 
| 
95
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   my $m = new Algorithm::Evolutionary::Op::Bitflip( 1, $self->{'mutation'}->{'priority'}  );  | 
| 
96
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   my $c;  | 
| 
97
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   #Big hack here  | 
| 
98
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   if ( $self->{'crossover'} ) {  | 
| 
99
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
     $c = new Algorithm::Evolutionary::Op::Crossover($self->{'crossover'}->{'points'}, $self->{'crossover'}->{'priority'} );  | 
| 
100
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   } elsif ($self->{'gene_boundary_crossover'}) {  | 
| 
101
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
     $c = new Algorithm::Evolutionary::Op::Gene_Boundary_Crossover($self->{'gene_boundary_crossover'}->{'points'},   | 
| 
102
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 								  $self->{'gene_boundary_crossover'}->{'gene_size'} ,   | 
| 
103
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 								  $self->{'gene_boundary_crossover'}->{'priority'} );  | 
| 
104
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   } elsif ($self->{'quad_xover'} ) {  | 
| 
105
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
     $c = new Algorithm::Evolutionary::Op::QuadXOver($self->{'crossover'}->{'points'}, $self->{'crossover'}->{'priority'} );  | 
| 
106
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   }  | 
| 
107
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
     | 
| 
108
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 # Fitness function  | 
| 
109
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   if ( !$fitness_object ) {  | 
| 
110
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
     my $fitness_class = "Algorithm::Evolutionary::Fitness::".$self->{'fitness'}->{'class'};  | 
| 
111
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
     eval  "require $fitness_class" || die "Can't load $fitness_class: $@\n";  | 
| 
112
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
     my @params = $self->{'fitness'}->{'params'}? @{$self->{'fitness'}->{'params'}} : ();  | 
| 
113
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
     $fitness_object = eval $fitness_class."->new( \@params )" || die "Can't instantiate $fitness_class: $@\n";  | 
| 
114
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   }  | 
| 
115
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   $self->{'_fitness'} = $fitness_object;  | 
| 
116
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
     | 
| 
117
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 #----------------------------------------------------------#  | 
| 
118
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 #Usamos estos operadores para definir una generación del algoritmo. Lo cual  | 
| 
119
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 # no es realmente necesario ya que este algoritmo define ambos operadores por  | 
| 
120
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 # defecto. Los parámetros son la función de fitness, la tasa de selección y los  | 
| 
121
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 # operadores de variación.  | 
| 
122
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   my $algorithm_class = "Algorithm::Evolutionary::Op::".($self->{'algorithm'}?$self->{'algorithm'}:'Easy');  | 
| 
123
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   my $generation = eval $algorithm_class."->new( \$fitness_object , \$self->{'selection_rate'} , [\$m, \$c] )"   | 
| 
124
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
     || die "Can't instantiate $algorithm_class: $@\n";;  | 
| 
125
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
     | 
| 
126
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 #Time  | 
| 
127
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   my $inicioTiempo = [gettimeofday()];  | 
| 
128
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
     | 
| 
129
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 #----------------------------------------------------------#  | 
| 
130
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   bless $self, $class;  | 
| 
131
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   $self->reset_population;  | 
| 
132
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   for ( @{$self->{'_population'}} ) {  | 
| 
133
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
     if ( !defined $_->Fitness() ) {  | 
| 
134
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
       $_->evaluate( $fitness_object );  | 
| 
135
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
     }  | 
| 
136
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   }  | 
| 
137
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
138
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   $self->{'_generation'} = $generation;  | 
| 
139
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   $self->{'_start_time'} = $inicioTiempo;  | 
| 
140
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   return $self;  | 
| 
141
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 }  | 
| 
142
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
143
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 =head2 population_size( $new_size )  | 
| 
144
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
145
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 Resets the population size to the C<$new_size>. It does not do  | 
| 
146
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 anything to the actual population, just resests the number. You should  | 
| 
147
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 do a C afterwards.  | 
| 
148
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
149
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 =cut  | 
| 
150
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
151
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 sub population_size {  | 
| 
152
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   my $self = shift;  | 
| 
153
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   my $new_size = shift || croak "Too small!";  | 
| 
154
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   $self->{'pop_size'} = $new_size;  | 
| 
155
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 }  | 
| 
156
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
157
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
158
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 =head2 reset_population()  | 
| 
159
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
160
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 Resets population, creating a new one; resets fitness counter to 0  | 
| 
161
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
162
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 =cut   | 
| 
163
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
164
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 sub reset_population {  | 
| 
165
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   my $self = shift;  | 
| 
166
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   #Initial population  | 
| 
167
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   my @pop;  | 
| 
168
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
169
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   #Creamos $popSize individuos  | 
| 
170
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   my $bits = $self->{'length'};   | 
| 
171
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   for ( 1..$self->{'pop_size'} ) {  | 
| 
172
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
       my $indi = Algorithm::Evolutionary::Individual::BitString->new( $bits );  | 
| 
173
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
       $indi->evaluate( $self->{'_fitness'} );  | 
| 
174
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
       push( @pop, $indi );  | 
| 
175
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   }  | 
| 
176
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   $self->{'_population'} = \@pop;  | 
| 
177
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   $self->{'_fitness'}->reset_evaluations;  | 
| 
178
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 }  | 
| 
179
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
180
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 =head2 step()  | 
| 
181
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
182
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 Runs a single step of the algorithm, that is, a single generation   | 
| 
183
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
184
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 =cut  | 
| 
185
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
186
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 sub step {  | 
| 
187
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
     my $self = shift;  | 
| 
188
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
     $self->{'_generation'}->apply( $self->{'_population'} );  | 
| 
189
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
     $self->{'_counter'}++;  | 
| 
190
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 }  | 
| 
191
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
192
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 =head2 run()  | 
| 
193
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
194
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 Applies the different operators in the order that they appear; returns the population  | 
| 
195
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 as a ref-to-array.  | 
| 
196
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
197
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 =cut  | 
| 
198
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
199
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 sub run {  | 
| 
200
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   my $self = shift;  | 
| 
201
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   $self->{'_counter'} = 0;  | 
| 
202
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   do {  | 
| 
203
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
       $self->step();  | 
| 
204
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
         | 
| 
205
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   } while( ($self->{'_counter'} < $self->{'max_generations'})   | 
| 
206
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 	 && ($self->{'_population'}->[0]->Fitness() < $self->{'max_fitness'}));  | 
| 
207
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
208
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 }  | 
| 
209
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
210
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 =head2 random_member()  | 
| 
211
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
212
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 Returns a random guy from the population  | 
| 
213
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
214
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 =cut  | 
| 
215
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
216
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 sub random_member {  | 
| 
217
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
     my $self = shift;  | 
| 
218
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
     return $self->{'_population'}->[rand( @{$self->{'_population'}} )];  | 
| 
219
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 }  | 
| 
220
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
221
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 =head2 results()  | 
| 
222
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
223
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 Returns results in a hash that contains the best, total time so far  | 
| 
224
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
  and the number of evaluations.   | 
| 
225
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
226
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 =cut  | 
| 
227
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
228
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 sub results {  | 
| 
229
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   my $self = shift;  | 
| 
230
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   my $population_size = scalar @{$self->{'_population'}};  | 
| 
231
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   my $last_good_pos = $population_size*(1-$self->{'selection_rate'});  | 
| 
232
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   my $results = { best => $self->{'_population'}->[0],  | 
| 
233
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 		  median => $self->{'_population'}->[ $population_size / 2],  | 
| 
234
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 		  last_good => $self->{'_population'}->[ $last_good_pos ],  | 
| 
235
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 		  time =>  tv_interval( $self->{'_start_time'} ),  | 
| 
236
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 		  evaluations => $self->{'_fitness'}->evaluations() };  | 
| 
237
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   return $results;  | 
| 
238
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
239
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 }  | 
| 
240
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
241
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 =head2 evaluated_population()  | 
| 
242
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
243
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 Returns the portion of population that has been evaluated (all but the new ones)  | 
| 
244
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
245
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 =cut   | 
| 
246
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
247
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 sub evaluated_population {  | 
| 
248
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   my $self = shift;  | 
| 
249
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   my $population_size = scalar @{$self->{'_population'}};  | 
| 
250
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   my $last_good_pos = $population_size*(1-$self->{'selection_rate'}) - 1;  | 
| 
251
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   return @{$self->{'_population'}}[0..$last_good_pos];  | 
| 
252
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 }  | 
| 
253
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
254
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
255
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 =head2 compute_average_distance( $individual )  | 
| 
256
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
257
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 Computes the average hamming distance to the population   | 
| 
258
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
259
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 =cut  | 
| 
260
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
261
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 sub compute_average_distance {  | 
| 
262
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   my $self = shift;  | 
| 
263
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   my $other = shift || croak "No other\n";  | 
| 
264
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   my $distance;  | 
| 
265
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   for my $p ( @{$self->{'_population'}} ) {  | 
| 
266
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
     $distance += hamming( $p->{'_str'}, $other->{'_str'} );  | 
| 
267
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   }  | 
| 
268
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   $distance /= @{$self->{'_population'}};  | 
| 
269
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 }  | 
| 
270
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
271
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 =head2 compute_min_distance( $individual )  | 
| 
272
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
273
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 Computes the average hamming distance to the population   | 
| 
274
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
275
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 =cut  | 
| 
276
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
277
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 sub compute_min_distance {  | 
| 
278
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   my $self = shift;  | 
| 
279
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   my $other = shift || croak "No other\n";  | 
| 
280
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   my $min_distance = length( $self->{'_population'}->[0]->{'_str'} );  | 
| 
281
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   for my $p ( @{$self->{'_population'}} ) {  | 
| 
282
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
     my $this_distance = hamming( $p->{'_str'}, $other->{'_str'} );  | 
| 
283
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
     $min_distance = ( $this_distance < $min_distance )?$this_distance:$min_distance;  | 
| 
284
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   }  | 
| 
285
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   return $min_distance;  | 
| 
286
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
287
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 }  | 
| 
288
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
289
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 =head1 Copyright  | 
| 
290
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
     | 
| 
291
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   This file is released under the GPL. See the LICENSE file included in this distribution,  | 
| 
292
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   or go to http://www.fsf.org/licenses/gpl.txt  | 
| 
293
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
294
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   CVS Info: $Date: 2010/03/16 18:39:40 $   | 
| 
295
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   $Header: /media/Backup/Repos/opeal/opeal/Algorithm-Evolutionary/lib/Algorithm/Evolutionary/Run.pm,v 3.2 2010/03/16 18:39:40 jmerelo Exp $   | 
| 
296
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   $Author: jmerelo $   | 
| 
297
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   $Revision: 3.2 $  | 
| 
298
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   $Name $  | 
| 
299
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
300
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 =cut  | 
| 
301
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
302
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 "Still there?";  |