line |
stmt |
bran |
cond |
sub |
pod |
time |
code |
1
|
|
|
|
|
|
|
package Algorithm::ContextVector; |
2
|
1
|
|
|
1
|
|
698
|
use strict; |
|
1
|
|
|
|
|
2
|
|
|
1
|
|
|
|
|
32
|
|
3
|
1
|
|
|
1
|
|
5
|
use warnings; |
|
1
|
|
|
|
|
3
|
|
|
1
|
|
|
|
|
46
|
|
4
|
|
|
|
|
|
|
|
5
|
|
|
|
|
|
|
our $VERSION = 0.01; |
6
|
|
|
|
|
|
|
|
7
|
|
|
|
|
|
|
=head1 NAME |
8
|
|
|
|
|
|
|
|
9
|
|
|
|
|
|
|
Algorithm::ContextVector - Simple implementation based on Data::CosineSimilarity |
10
|
|
|
|
|
|
|
|
11
|
|
|
|
|
|
|
=head1 SYNOPSIS |
12
|
|
|
|
|
|
|
|
13
|
|
|
|
|
|
|
my $cv = Algorithm::ContextVector->new( top => 300 ); |
14
|
|
|
|
|
|
|
|
15
|
|
|
|
|
|
|
$cs->add_instance( label => 'label1', attributes => { feature1 => 3, feature2 => 1, feature3 => 10 } ); |
16
|
|
|
|
|
|
|
$cs->add_instance( label => [ 'label2', 'label3' ], attributes => { ... } ); |
17
|
|
|
|
|
|
|
$cs->add_instance( label => ..., attributes => ... ); |
18
|
|
|
|
|
|
|
... |
19
|
|
|
|
|
|
|
|
20
|
|
|
|
|
|
|
$cv->train; |
21
|
|
|
|
|
|
|
|
22
|
|
|
|
|
|
|
my $results = $cv->predict( attributes => { ... } ); |
23
|
|
|
|
|
|
|
|
24
|
|
|
|
|
|
|
=head1 DESCRIPTION |
25
|
|
|
|
|
|
|
|
26
|
|
|
|
|
|
|
Simple implementation based on Data::CosineSimilarity |
27
|
|
|
|
|
|
|
|
28
|
|
|
|
|
|
|
=head2 $class->new( top => ... ) |
29
|
|
|
|
|
|
|
|
30
|
|
|
|
|
|
|
During the training, keeps the $top most heavy weighted features. |
31
|
|
|
|
|
|
|
Keeps the complete feature set if omitted. |
32
|
|
|
|
|
|
|
|
33
|
|
|
|
|
|
|
=cut |
34
|
|
|
|
|
|
|
|
35
|
1
|
|
|
1
|
|
888
|
use Data::CosineSimilarity; |
|
1
|
|
|
|
|
20476
|
|
|
1
|
|
|
|
|
37
|
|
36
|
1
|
|
|
1
|
|
4734
|
use Storable; |
|
1
|
|
|
|
|
4821
|
|
|
1
|
|
|
|
|
1161
|
|
37
|
|
|
|
|
|
|
|
38
|
|
|
|
|
|
|
sub new { |
39
|
0
|
|
|
0
|
1
|
|
my $class = shift; |
40
|
0
|
|
|
|
|
|
my %opts = @_; |
41
|
0
|
|
|
|
|
|
return bless { |
42
|
|
|
|
|
|
|
top => $opts{top}, |
43
|
|
|
|
|
|
|
labels => {}, |
44
|
|
|
|
|
|
|
}, $class; |
45
|
|
|
|
|
|
|
} |
46
|
|
|
|
|
|
|
|
47
|
|
|
|
|
|
|
=head2 $class->new_from_file( $filename ) |
48
|
|
|
|
|
|
|
|
49
|
|
|
|
|
|
|
Returns the instance of Algorithm::ContextVector stored in $filename. |
50
|
|
|
|
|
|
|
|
51
|
|
|
|
|
|
|
=cut |
52
|
|
|
|
|
|
|
|
53
|
|
|
|
|
|
|
sub new_from_file { |
54
|
0
|
|
|
0
|
1
|
|
my $class = shift; |
55
|
0
|
|
|
|
|
|
my ($file) = @_; |
56
|
0
|
|
|
|
|
|
return retrieve($file); |
57
|
|
|
|
|
|
|
} |
58
|
|
|
|
|
|
|
|
59
|
|
|
|
|
|
|
=head2 $self->save_to_file( $filename ) |
60
|
|
|
|
|
|
|
|
61
|
|
|
|
|
|
|
Save the $self to $filename using Storable. |
62
|
|
|
|
|
|
|
|
63
|
|
|
|
|
|
|
=cut |
64
|
|
|
|
|
|
|
|
65
|
|
|
|
|
|
|
sub save_to_file { |
66
|
0
|
|
|
0
|
1
|
|
my $self = shift; |
67
|
0
|
|
|
|
|
|
my ($file) = @_; |
68
|
0
|
|
|
|
|
|
store($self, $file); |
69
|
|
|
|
|
|
|
} |
70
|
|
|
|
|
|
|
|
71
|
|
|
|
|
|
|
sub _add_hashrefs { |
72
|
0
|
|
|
0
|
|
|
my $self = shift; |
73
|
0
|
|
|
|
|
|
my @list = @_; |
74
|
0
|
|
|
|
|
|
my %r; |
75
|
0
|
|
|
|
|
|
for my $h (@list) { |
76
|
0
|
|
|
|
|
|
for my $key (keys %$h) { |
77
|
0
|
|
0
|
|
|
|
$r{$key} ||= 0; |
78
|
0
|
|
|
|
|
|
$r{$key} = $r{$key} + $h->{$key}; |
79
|
|
|
|
|
|
|
} |
80
|
|
|
|
|
|
|
} |
81
|
0
|
|
|
|
|
|
return \%r; |
82
|
|
|
|
|
|
|
} |
83
|
|
|
|
|
|
|
|
84
|
|
|
|
|
|
|
=head2 $self->add_instance( label => [ ... ], attributes => { ... } ) |
85
|
|
|
|
|
|
|
|
86
|
|
|
|
|
|
|
=cut |
87
|
|
|
|
|
|
|
|
88
|
|
|
|
|
|
|
sub add_instance { |
89
|
0
|
|
|
0
|
1
|
|
my $self = shift; |
90
|
0
|
|
|
|
|
|
my %args = @_; |
91
|
|
|
|
|
|
|
|
92
|
0
|
0
|
|
|
|
|
my $attr = $args{attributes} or die 'attributes required'; |
93
|
0
|
0
|
|
|
|
|
return unless keys %$attr; |
94
|
|
|
|
|
|
|
|
95
|
0
|
0
|
|
|
|
|
my $labels = $args{label} or die 'label required'; |
96
|
0
|
0
|
|
|
|
|
$labels = [ $labels ] unless ref $labels; |
97
|
|
|
|
|
|
|
|
98
|
0
|
|
|
|
|
|
for $_ (@$labels) { |
99
|
0
|
|
0
|
|
|
|
$self->{labels}{$_}{features} ||= {}; |
100
|
0
|
|
|
|
|
|
$self->{labels}{$_}{features} = $self->_add_hashrefs( |
101
|
|
|
|
|
|
|
$self->{labels}{$_}{features}, $attr |
102
|
|
|
|
|
|
|
); |
103
|
|
|
|
|
|
|
} |
104
|
|
|
|
|
|
|
} |
105
|
|
|
|
|
|
|
|
106
|
|
|
|
|
|
|
sub _norm_features { |
107
|
0
|
|
|
0
|
|
|
my $self = shift; |
108
|
0
|
|
|
|
|
|
my ($features) = @_; |
109
|
0
|
|
|
|
|
|
my $norm = 0; |
110
|
0
|
|
|
|
|
|
$norm += $_**2 for values %$features; |
111
|
0
|
|
|
|
|
|
$norm = sqrt($norm); |
112
|
|
|
|
|
|
|
|
113
|
0
|
|
|
|
|
|
$_ = $_ / $norm for values %$features; |
114
|
|
|
|
|
|
|
|
115
|
0
|
|
|
|
|
|
return $features; |
116
|
|
|
|
|
|
|
} |
117
|
|
|
|
|
|
|
|
118
|
|
|
|
|
|
|
sub _cut_features { |
119
|
0
|
|
|
0
|
|
|
my $self = shift; |
120
|
0
|
|
|
|
|
|
my ($features) = @_; |
121
|
0
|
|
|
|
|
|
my $top = $self->{top}; |
122
|
0
|
0
|
|
|
|
|
return $features unless defined $top; |
123
|
|
|
|
|
|
|
|
124
|
0
|
|
|
|
|
|
my @sorted = |
125
|
0
|
|
|
|
|
|
sort { $b->[1] <=> $a->[1] } |
126
|
0
|
|
|
|
|
|
map { [ $_, $features->{$_} ] } |
127
|
|
|
|
|
|
|
keys %$features; |
128
|
|
|
|
|
|
|
|
129
|
0
|
|
|
|
|
|
my @keep = splice @sorted, 0, $top; |
130
|
|
|
|
|
|
|
|
131
|
0
|
|
|
|
|
|
my $r = { map { $_->[0] => $_->[1] } @keep }; |
|
0
|
|
|
|
|
|
|
132
|
|
|
|
|
|
|
|
133
|
0
|
|
|
|
|
|
return $r; |
134
|
|
|
|
|
|
|
} |
135
|
|
|
|
|
|
|
|
136
|
|
|
|
|
|
|
# IDEA dead code for now |
137
|
|
|
|
|
|
|
sub _cut_features_avg { |
138
|
0
|
|
|
0
|
|
|
my $features = shift; |
139
|
0
|
|
|
|
|
|
my $sum = 0; |
140
|
0
|
|
|
|
|
|
$sum += $_ for values %$features; |
141
|
0
|
|
|
|
|
|
my $count = scalar keys %$features; |
142
|
0
|
|
|
|
|
|
my $cut = $sum / $count; # hum cut at the avg |
143
|
0
|
|
|
|
|
|
for (keys %$features) { |
144
|
0
|
0
|
|
|
|
|
delete $features->{$_} if $features->{$_} < $cut; |
145
|
|
|
|
|
|
|
} |
146
|
0
|
|
|
|
|
|
return $features; |
147
|
|
|
|
|
|
|
} |
148
|
|
|
|
|
|
|
|
149
|
|
|
|
|
|
|
=head2 $self->train |
150
|
|
|
|
|
|
|
|
151
|
|
|
|
|
|
|
Keeps the best features (top N) and norms the vectors. |
152
|
|
|
|
|
|
|
|
153
|
|
|
|
|
|
|
=cut |
154
|
|
|
|
|
|
|
|
155
|
|
|
|
|
|
|
sub train { |
156
|
0
|
|
|
0
|
1
|
|
my $self = shift; |
157
|
0
|
|
|
|
|
|
for $_ (keys %{ $self->{labels} }) { |
|
0
|
|
|
|
|
|
|
158
|
0
|
|
|
|
|
|
$self->{labels}{$_}{features} = $self->_cut_features( $self->{labels}{$_}{features} ); |
159
|
0
|
|
|
|
|
|
$self->{labels}{$_}{features} = $self->_norm_features( $self->{labels}{$_}{features} ); |
160
|
|
|
|
|
|
|
} |
161
|
|
|
|
|
|
|
} |
162
|
|
|
|
|
|
|
|
163
|
|
|
|
|
|
|
=head2 $self->predict( attributes => { ... } ) |
164
|
|
|
|
|
|
|
|
165
|
|
|
|
|
|
|
Returns a hashref with the labels as the keys and the cosines as the values. |
166
|
|
|
|
|
|
|
|
167
|
|
|
|
|
|
|
=cut |
168
|
|
|
|
|
|
|
|
169
|
|
|
|
|
|
|
sub predict { |
170
|
0
|
|
|
0
|
1
|
|
my $self = shift; |
171
|
0
|
|
|
|
|
|
my %args = @_; |
172
|
|
|
|
|
|
|
|
173
|
0
|
0
|
|
|
|
|
my $attr = $args{attributes} or die 'attributes required'; |
174
|
|
|
|
|
|
|
|
175
|
0
|
|
|
|
|
|
my $cs = Data::CosineSimilarity->new( normed => 1 ); |
176
|
|
|
|
|
|
|
|
177
|
0
|
|
|
|
|
|
for my $label (keys %{ $self->{labels} }) { |
|
0
|
|
|
|
|
|
|
178
|
0
|
|
|
|
|
|
$cs->add( $label => $self->{labels}{$label}{features} ); |
179
|
|
|
|
|
|
|
} |
180
|
|
|
|
|
|
|
|
181
|
0
|
|
|
|
|
|
$cs->add( __my_test => $self->_norm_features( $self->_cut_features( $attr ) ) ); |
182
|
|
|
|
|
|
|
|
183
|
0
|
|
|
|
|
|
my @all = $cs->all_for_label('__my_test'); |
184
|
0
|
|
|
|
|
|
my %r; |
185
|
0
|
|
|
|
|
|
for (@all) { |
186
|
0
|
|
|
|
|
|
my (undef, $label) = $_->labels; |
187
|
0
|
|
|
|
|
|
$r{$label} = $_->cosine; |
188
|
|
|
|
|
|
|
} |
189
|
0
|
|
|
|
|
|
return \%r; |
190
|
|
|
|
|
|
|
} |
191
|
|
|
|
|
|
|
|
192
|
|
|
|
|
|
|
=head1 AUTHOR |
193
|
|
|
|
|
|
|
|
194
|
|
|
|
|
|
|
Antoine Imbert, C<< >> |
195
|
|
|
|
|
|
|
|
196
|
|
|
|
|
|
|
=head1 LICENSE AND COPYRIGHT |
197
|
|
|
|
|
|
|
|
198
|
|
|
|
|
|
|
This library is free software; you can redistribute it and/or modify it under the same terms as Perl itself. |
199
|
|
|
|
|
|
|
|
200
|
|
|
|
|
|
|
=cut |
201
|
|
|
|
|
|
|
|
202
|
|
|
|
|
|
|
1; |