line |
stmt |
bran |
cond |
sub |
pod |
time |
code |
1
|
|
|
|
|
|
|
package Algorithm::Burg; |
2
|
|
|
|
|
|
|
# ABSTRACT: extrapolate time series using Burg's method |
3
|
|
|
|
|
|
|
|
4
|
|
|
|
|
|
|
|
5
|
3
|
|
|
3
|
|
55886
|
use strict; |
|
3
|
|
|
|
|
7
|
|
|
3
|
|
|
|
|
127
|
|
6
|
3
|
|
|
3
|
|
14
|
use warnings qw(all); |
|
3
|
|
|
|
|
5
|
|
|
3
|
|
|
|
|
123
|
|
7
|
|
|
|
|
|
|
|
8
|
3
|
|
|
3
|
|
13
|
use Carp qw(croak); |
|
3
|
|
|
|
|
8
|
|
|
3
|
|
|
|
|
234
|
|
9
|
3
|
|
|
3
|
|
19
|
use List::Util qw(sum); |
|
3
|
|
|
|
|
5
|
|
|
3
|
|
|
|
|
319
|
|
10
|
|
|
|
|
|
|
|
11
|
3
|
|
|
3
|
|
1893
|
use Moo; |
|
3
|
|
|
|
|
181419
|
|
|
3
|
|
|
|
|
17
|
|
12
|
3
|
|
|
|
|
249
|
use MooX::Types::MooseLike::Base qw( |
13
|
|
|
|
|
|
|
ArrayRef |
14
|
|
|
|
|
|
|
Num |
15
|
3
|
|
|
3
|
|
5815
|
); |
|
3
|
|
|
|
|
15798
|
|
16
|
3
|
|
|
|
|
1536
|
use MooX::Types::MooseLike::Numeric qw( |
17
|
|
|
|
|
|
|
PositiveInt |
18
|
3
|
|
|
3
|
|
1656
|
); |
|
3
|
|
|
|
|
2919
|
|
19
|
|
|
|
|
|
|
|
20
|
|
|
|
|
|
|
our $VERSION = '0.001'; # VERSION |
21
|
|
|
|
|
|
|
|
22
|
|
|
|
|
|
|
|
23
|
|
|
|
|
|
|
has coefficients => (is => 'rwp', isa => ArrayRef[Num]); |
24
|
|
|
|
|
|
|
|
25
|
|
|
|
|
|
|
|
26
|
|
|
|
|
|
|
has order => (is => 'ro', isa => PositiveInt, required => 1); |
27
|
|
|
|
|
|
|
|
28
|
|
|
|
|
|
|
|
29
|
|
|
|
|
|
|
has series_tail => (is => 'rwp', isa => ArrayRef[Num]); |
30
|
|
|
|
|
|
|
|
31
|
|
|
|
|
|
|
|
32
|
|
|
|
|
|
|
sub train { |
33
|
2
|
|
|
2
|
1
|
4374
|
my ($self, $time_series) = @_; |
34
|
|
|
|
|
|
|
|
35
|
2
|
50
|
|
|
|
13
|
croak '$time_series should be an ArrayRef' |
36
|
|
|
|
|
|
|
if ref($time_series) ne 'ARRAY'; |
37
|
|
|
|
|
|
|
|
38
|
2
|
|
|
|
|
11
|
my $m = $self->order; |
39
|
2
|
|
|
|
|
27
|
my @x = @$time_series; |
40
|
|
|
|
|
|
|
|
41
|
2
|
50
|
|
|
|
9
|
croak '$time_series should have more elements than the AR order is' |
42
|
|
|
|
|
|
|
if $#x < $m; |
43
|
|
|
|
|
|
|
|
44
|
|
|
|
|
|
|
# initialize Ak |
45
|
2
|
|
|
|
|
13
|
my @Ak = (1.0, (0.0) x $m); |
46
|
|
|
|
|
|
|
|
47
|
|
|
|
|
|
|
# initialize f and b |
48
|
2
|
|
|
|
|
26
|
my @f = @$time_series; |
49
|
2
|
|
|
|
|
17
|
my @B = @$time_series; |
50
|
|
|
|
|
|
|
|
51
|
|
|
|
|
|
|
# Initialize Dk |
52
|
193
|
|
|
|
|
255
|
my $Dk = sum map { |
53
|
2
|
|
|
|
|
13
|
2.0 * $f[$_] ** 2 |
54
|
|
|
|
|
|
|
} 0 .. $#f; |
55
|
2
|
|
|
|
|
16
|
$Dk -= $f[0] ** 2 + $B[$#x] ** 2; |
56
|
|
|
|
|
|
|
|
57
|
|
|
|
|
|
|
# Burg recursion |
58
|
2
|
|
|
|
|
12
|
for my $k (0 .. $m - 1) { |
59
|
|
|
|
|
|
|
# compute mu |
60
|
2582
|
|
|
|
|
3223
|
my $mu = sum map { |
61
|
68
|
|
|
|
|
204
|
$f[$_ + $k + 1] * $B[$_] |
62
|
|
|
|
|
|
|
} 0 .. $#x - $k - 1; |
63
|
68
|
|
|
|
|
190
|
$mu *= -2.0 / $Dk; |
64
|
|
|
|
|
|
|
|
65
|
|
|
|
|
|
|
# update Ak |
66
|
68
|
|
|
|
|
110
|
for my $n (0 .. ($k + 1) / 2) { |
67
|
1096
|
|
|
|
|
1478
|
my $t1 = $Ak[$n] + $mu * $Ak[$k + 1 - $n]; |
68
|
1096
|
|
|
|
|
6294
|
my $t2 = $Ak[$k + 1 - $n] + $mu * $Ak[$n]; |
69
|
1096
|
|
|
|
|
982
|
$Ak[$n] = $t1; |
70
|
1096
|
|
|
|
|
1448
|
$Ak[$k + 1 - $n] = $t2; |
71
|
|
|
|
|
|
|
} |
72
|
|
|
|
|
|
|
|
73
|
|
|
|
|
|
|
# update f and b |
74
|
68
|
|
|
|
|
125
|
for my $n (0 .. $#x - $k - 1) { |
75
|
2582
|
|
|
|
|
2798
|
my $t1 = $f[$n + $k + 1] + $mu * $B[$n]; |
76
|
2582
|
|
|
|
|
2752
|
my $t2 = $B[$n] + $mu * $f[$n + $k + 1]; |
77
|
2582
|
|
|
|
|
2298
|
$f[$n + $k + 1] = $t1; |
78
|
2582
|
|
|
|
|
2583
|
$B[$n] = $t2; |
79
|
|
|
|
|
|
|
} |
80
|
|
|
|
|
|
|
|
81
|
|
|
|
|
|
|
# update Dk |
82
|
68
|
|
|
|
|
197
|
$Dk = (1.0 - $mu ** 2) * $Dk |
83
|
|
|
|
|
|
|
- $f[$k + 1] ** 2 |
84
|
|
|
|
|
|
|
- $B[$#x - $k - 1] ** 2; |
85
|
|
|
|
|
|
|
} |
86
|
|
|
|
|
|
|
|
87
|
2
|
|
|
|
|
32
|
$self->_set_series_tail([ @x[$#x - $m .. $#x] ]); |
88
|
2
|
|
|
|
|
2302
|
return $self->_set_coefficients([ @Ak[1 .. $#Ak] ]); |
89
|
|
|
|
|
|
|
} |
90
|
|
|
|
|
|
|
|
91
|
|
|
|
|
|
|
|
92
|
|
|
|
|
|
|
sub predict { |
93
|
1
|
|
|
1
|
1
|
1517
|
my ($self, $n) = @_; |
94
|
|
|
|
|
|
|
|
95
|
1
|
|
|
|
|
6
|
my $coeffs = $self->coefficients; |
96
|
1
|
|
|
|
|
28
|
my $m = $self->order; |
97
|
1
|
50
|
0
|
|
|
13
|
$n ||= $m |
|
|
|
33
|
|
|
|
|
98
|
|
|
|
|
|
|
if !$n || $n > $m; |
99
|
|
|
|
|
|
|
|
100
|
1
|
|
|
|
|
2
|
my @predicted = @{ $self->series_tail }; |
|
1
|
|
|
|
|
13
|
|
101
|
1
|
|
|
|
|
4
|
for my $i ($m .. $m + $n) { |
102
|
4160
|
|
|
|
|
6201
|
$predicted[$i] = -1.0 * sum map { |
103
|
65
|
|
|
|
|
267
|
$coeffs->[$_] * $predicted[$i - 1 - $_] |
104
|
|
|
|
|
|
|
} 0 .. $m - 1; |
105
|
|
|
|
|
|
|
} |
106
|
|
|
|
|
|
|
|
107
|
1
|
|
|
|
|
31
|
return [ @predicted[$m .. $#predicted] ]; |
108
|
|
|
|
|
|
|
} |
109
|
|
|
|
|
|
|
|
110
|
|
|
|
|
|
|
|
111
|
|
|
|
|
|
|
1; |
112
|
|
|
|
|
|
|
|
113
|
|
|
|
|
|
|
__END__ |