line |
stmt |
bran |
cond |
sub |
pod |
time |
code |
1
|
|
|
|
|
|
|
package Algorithm::AdaBoost; |
2
|
|
|
|
|
|
|
|
3
|
2
|
|
|
2
|
|
850
|
use 5.014; |
|
2
|
|
|
|
|
6
|
|
|
2
|
|
|
|
|
62
|
|
4
|
2
|
|
|
2
|
|
874
|
use Algorithm::AdaBoost::Classifier; |
|
2
|
|
|
|
|
7
|
|
|
2
|
|
|
|
|
64
|
|
5
|
2
|
|
|
2
|
|
24
|
use Carp qw//; |
|
2
|
|
|
|
|
4
|
|
|
2
|
|
|
|
|
36
|
|
6
|
2
|
|
|
2
|
|
13
|
use List::Util; |
|
2
|
|
|
|
|
5
|
|
|
2
|
|
|
|
|
114
|
|
7
|
2
|
|
|
2
|
|
11
|
use Smart::Args; |
|
2
|
|
|
|
|
2
|
|
|
2
|
|
|
|
|
1329
|
|
8
|
|
|
|
|
|
|
|
9
|
|
|
|
|
|
|
our $VERSION = '0.01'; |
10
|
|
|
|
|
|
|
|
11
|
|
|
|
|
|
|
sub new { |
12
|
1
|
|
|
1
|
1
|
12
|
args |
13
|
|
|
|
|
|
|
my $class => 'ClassName', |
14
|
|
|
|
|
|
|
my $training_set => +{ isa => 'ArrayRef', optional => 1 }, |
15
|
|
|
|
|
|
|
my $weak_classifier_generator => +{ isa => 'CodeRef', optional => 1 }; |
16
|
|
|
|
|
|
|
|
17
|
1
|
|
|
|
|
179
|
bless +{ |
18
|
|
|
|
|
|
|
training_set => $training_set, |
19
|
|
|
|
|
|
|
weak_classifier_generator => $weak_classifier_generator, |
20
|
|
|
|
|
|
|
} => $class; |
21
|
|
|
|
|
|
|
} |
22
|
|
|
|
|
|
|
|
23
|
|
|
|
|
|
|
sub calculate_classifier_weight { |
24
|
1000
|
|
|
1000
|
0
|
5025
|
args |
25
|
|
|
|
|
|
|
my $self, |
26
|
|
|
|
|
|
|
my $classifier => 'CodeRef', |
27
|
|
|
|
|
|
|
my $distribution => 'ArrayRef[Num]'; |
28
|
|
|
|
|
|
|
|
29
|
1000
|
|
|
|
|
108661
|
my $error_ratio = $self->evaluate_error_ratio( |
30
|
|
|
|
|
|
|
classifier => $classifier, |
31
|
|
|
|
|
|
|
distribution => $distribution, |
32
|
|
|
|
|
|
|
); |
33
|
1000
|
|
|
|
|
8072
|
return log((1 - $error_ratio) / $error_ratio) / 2; |
34
|
|
|
|
|
|
|
} |
35
|
|
|
|
|
|
|
|
36
|
|
|
|
|
|
|
sub classify { |
37
|
0
|
|
|
0
|
1
|
0
|
args_pos |
38
|
|
|
|
|
|
|
my $self, |
39
|
|
|
|
|
|
|
my $feature => 'Any'; |
40
|
0
|
0
|
|
|
|
0
|
Carp::croak 'Training phase is undone yet.' unless $self->trained; |
41
|
0
|
|
|
|
|
0
|
$self->final_classifier->classify($feature); |
42
|
|
|
|
|
|
|
} |
43
|
|
|
|
|
|
|
|
44
|
|
|
|
|
|
|
sub construct_hardest_distribution { |
45
|
1000
|
|
|
1000
|
0
|
4741
|
args |
46
|
|
|
|
|
|
|
my $self, |
47
|
|
|
|
|
|
|
my $classifier => 'CodeRef', |
48
|
|
|
|
|
|
|
my $previous_distribution => 'ArrayRef[Num]', |
49
|
|
|
|
|
|
|
my $training_set => 'ArrayRef[HashRef]', |
50
|
|
|
|
|
|
|
my $weight => 'Num'; |
51
|
|
|
|
|
|
|
|
52
|
100000
|
|
|
|
|
5134882
|
my @distribution = map { |
53
|
1000
|
|
|
|
|
192521
|
my $training_data = $training_set->[$_]; |
54
|
100000
|
|
|
|
|
327841
|
$previous_distribution->[$_] |
55
|
|
|
|
|
|
|
* exp(-$weight * $training_data->{label} |
56
|
|
|
|
|
|
|
* $classifier->($training_data->{feature})); |
57
|
|
|
|
|
|
|
} 0 .. $#$previous_distribution; |
58
|
1000
|
|
|
|
|
5972393
|
my $partition_function = List::Util::sum(@distribution); |
59
|
1000
|
|
|
|
|
2467
|
[ map { $_ / $partition_function } @distribution ]; |
|
100000
|
|
|
|
|
8197384
|
|
60
|
|
|
|
|
|
|
} |
61
|
|
|
|
|
|
|
|
62
|
|
|
|
|
|
|
sub evaluate_error_ratio { |
63
|
1000
|
|
|
1000
|
0
|
3726
|
args |
64
|
|
|
|
|
|
|
my $self, |
65
|
|
|
|
|
|
|
my $classifier => 'CodeRef', |
66
|
|
|
|
|
|
|
my $distribution => 'ArrayRef[Num]'; |
67
|
|
|
|
|
|
|
|
68
|
1000
|
|
|
|
|
97187
|
my $accuracy = 0; |
69
|
1000
|
|
|
|
|
5482
|
for my $i (0 .. $#$distribution) { |
70
|
100000
|
|
|
|
|
2720949
|
my $training_data = $self->training_set->[$i]; |
71
|
100000
|
100
|
|
|
|
264243
|
if ($classifier->($training_data->{feature}) == $training_data->{label}) { |
72
|
51581
|
|
|
|
|
2717393
|
$accuracy += $distribution->[$i]; |
73
|
|
|
|
|
|
|
} |
74
|
|
|
|
|
|
|
} |
75
|
1000
|
|
|
|
|
25703
|
return 1 - $accuracy; |
76
|
|
|
|
|
|
|
} |
77
|
|
|
|
|
|
|
|
78
|
|
|
|
|
|
|
sub final_classifier { |
79
|
1
|
|
|
1
|
1
|
4
|
args my $self; |
80
|
1
|
50
|
|
|
|
22
|
Carp::croak 'The classifier is not trained' unless $self->trained; |
81
|
1
|
|
|
|
|
4
|
return $self->{final_classifier}; |
82
|
|
|
|
|
|
|
} |
83
|
|
|
|
|
|
|
|
84
|
|
|
|
|
|
|
sub train { |
85
|
1
|
|
|
1
|
1
|
11
|
args |
86
|
|
|
|
|
|
|
my $self, |
87
|
|
|
|
|
|
|
my $num_iterations => 'Int', |
88
|
|
|
|
|
|
|
my $training_set => +{ isa => 'ArrayRef', optional => 1 }, |
89
|
|
|
|
|
|
|
my $weak_classifier_generator => +{ isa => 'CodeRef', optional => 1 }; |
90
|
|
|
|
|
|
|
|
91
|
1
|
|
33
|
|
|
154
|
$training_set //= $self->training_set |
|
|
|
33
|
|
|
|
|
92
|
|
|
|
|
|
|
// Carp::croak('Given no training set.'); |
93
|
1
|
|
33
|
|
|
8
|
$weak_classifier_generator //= $self->weak_classifier_generator |
|
|
|
33
|
|
|
|
|
94
|
|
|
|
|
|
|
// Carp::croak('Given no weak classifier generator.'); |
95
|
1
|
|
|
|
|
3
|
my $num_training_set = @$training_set; |
96
|
|
|
|
|
|
|
|
97
|
|
|
|
|
|
|
# Initial distribution is uniform. |
98
|
1
|
|
|
|
|
31
|
my $distribution = [ (1 / $num_training_set) x $num_training_set ]; |
99
|
|
|
|
|
|
|
|
100
|
1
|
|
|
|
|
3
|
my ($weak_classifier, $weight); |
101
|
0
|
|
|
|
|
0
|
my @weak_classifiers; |
102
|
1
|
|
|
|
|
6
|
while ($num_iterations--) { |
103
|
|
|
|
|
|
|
# Construct a weak classifier which classifies data on the distribution. |
104
|
1000
|
|
|
|
|
4003
|
$weak_classifier = $weak_classifier_generator->( |
105
|
|
|
|
|
|
|
distribution => $distribution, |
106
|
|
|
|
|
|
|
training_set => $training_set, |
107
|
|
|
|
|
|
|
); |
108
|
1000
|
|
|
|
|
29255799
|
$weight = $self->calculate_classifier_weight( |
109
|
|
|
|
|
|
|
classifier => $weak_classifier, |
110
|
|
|
|
|
|
|
distribution => $distribution, |
111
|
|
|
|
|
|
|
); |
112
|
1000
|
|
|
|
|
4571555
|
push @weak_classifiers, +{ |
113
|
|
|
|
|
|
|
classifier => $weak_classifier, |
114
|
|
|
|
|
|
|
weight => $weight, |
115
|
|
|
|
|
|
|
}; |
116
|
|
|
|
|
|
|
} continue { |
117
|
1000
|
|
|
|
|
4151
|
$distribution = $self->construct_hardest_distribution( |
118
|
|
|
|
|
|
|
classifier => $weak_classifier, |
119
|
|
|
|
|
|
|
previous_distribution => $distribution, |
120
|
|
|
|
|
|
|
training_set => $training_set, |
121
|
|
|
|
|
|
|
weight => $weight, |
122
|
|
|
|
|
|
|
); |
123
|
|
|
|
|
|
|
} |
124
|
|
|
|
|
|
|
|
125
|
1
|
|
|
|
|
16
|
return $self->{final_classifier} = Algorithm::AdaBoost::Classifier->new( |
126
|
|
|
|
|
|
|
weak_classifiers => \@weak_classifiers, |
127
|
|
|
|
|
|
|
); |
128
|
|
|
|
|
|
|
} |
129
|
|
|
|
|
|
|
|
130
|
3
|
|
|
3
|
1
|
28
|
sub trained { exists shift->{final_classifier} } |
131
|
|
|
|
|
|
|
|
132
|
100001
|
|
|
100001
|
1
|
234838
|
sub training_set { shift->{training_set} } |
133
|
|
|
|
|
|
|
|
134
|
1
|
|
|
1
|
1
|
6
|
sub weak_classifier_generator { shift->{weak_classifier_generator} } |
135
|
|
|
|
|
|
|
|
136
|
|
|
|
|
|
|
1; |
137
|
|
|
|
|
|
|
__END__ |
138
|
|
|
|
|
|
|
|
139
|
|
|
|
|
|
|
=head1 NAME |
140
|
|
|
|
|
|
|
|
141
|
|
|
|
|
|
|
Algorithm::AdaBoost - AdaBoost learning algorithm |
142
|
|
|
|
|
|
|
|
143
|
|
|
|
|
|
|
=head1 SYNOPSIS |
144
|
|
|
|
|
|
|
|
145
|
|
|
|
|
|
|
use Algorithm::AdaBoost; |
146
|
|
|
|
|
|
|
|
147
|
|
|
|
|
|
|
# Training phase. |
148
|
|
|
|
|
|
|
my $learner = Alogrithm::AdaBoost->new( |
149
|
|
|
|
|
|
|
training_set => [ |
150
|
|
|
|
|
|
|
+{ feature => [...], label => 1, }, |
151
|
|
|
|
|
|
|
+{ feature => [...], label => -1, }, |
152
|
|
|
|
|
|
|
+{ feature => [...], label => -1, }, |
153
|
|
|
|
|
|
|
... |
154
|
|
|
|
|
|
|
], |
155
|
|
|
|
|
|
|
weak_classifier_generator => \&my_poor_learning_algorithm, |
156
|
|
|
|
|
|
|
); |
157
|
|
|
|
|
|
|
$learner->train(num_iterations => 1_000); |
158
|
|
|
|
|
|
|
|
159
|
|
|
|
|
|
|
# Now you have a boost-ed classifier (Algorithm::AdaBoost::Classifier). |
160
|
|
|
|
|
|
|
my $classifier = $learner->final_classifier; |
161
|
|
|
|
|
|
|
given ($classifier->classify([...])) { |
162
|
|
|
|
|
|
|
when ($_ > 0) { say 'The data belongs to class 1.' } |
163
|
|
|
|
|
|
|
when ($_ < 0) { say 'The data belongs to class 2.' } |
164
|
|
|
|
|
|
|
default { warn 'The data cannot be classified.' } |
165
|
|
|
|
|
|
|
} |
166
|
|
|
|
|
|
|
|
167
|
|
|
|
|
|
|
=head1 DESCRIPTION |
168
|
|
|
|
|
|
|
|
169
|
|
|
|
|
|
|
AdaBoost is a machine learning algorithm proposed by Freund and Schapire. |
170
|
|
|
|
|
|
|
Using an arbitrary binary classification algorithm, The algorithm can construct a more accurate classifier (i.e. it is a meta-algorithm). |
171
|
|
|
|
|
|
|
|
172
|
|
|
|
|
|
|
=head1 METHODS |
173
|
|
|
|
|
|
|
|
174
|
|
|
|
|
|
|
=head2 new |
175
|
|
|
|
|
|
|
|
176
|
|
|
|
|
|
|
Constructor. You can specify 2 optional attributes: |
177
|
|
|
|
|
|
|
|
178
|
|
|
|
|
|
|
=over 2 |
179
|
|
|
|
|
|
|
|
180
|
|
|
|
|
|
|
=item training_set |
181
|
|
|
|
|
|
|
|
182
|
|
|
|
|
|
|
An ArrayRef which is used as a training data set. |
183
|
|
|
|
|
|
|
|
184
|
|
|
|
|
|
|
Each item is a HashRef having 2 keys: C<feature> and C<label>. C<feature> is a arbitrary input that classifier accepts and C<label> is a expected output label (C<+1> or C<-1>). |
185
|
|
|
|
|
|
|
|
186
|
|
|
|
|
|
|
=item weak_classifier_generator |
187
|
|
|
|
|
|
|
|
188
|
|
|
|
|
|
|
A CodeRef which is expected to generate a binary classifier function. |
189
|
|
|
|
|
|
|
|
190
|
|
|
|
|
|
|
When the function is called, 2 named parameters are specified like this: |
191
|
|
|
|
|
|
|
|
192
|
|
|
|
|
|
|
my $classifier = $generator->( |
193
|
|
|
|
|
|
|
distribution => [...], |
194
|
|
|
|
|
|
|
training_set => [...], |
195
|
|
|
|
|
|
|
); |
196
|
|
|
|
|
|
|
|
197
|
|
|
|
|
|
|
C<distribution> is an ArrayRef which each item is a probability of corresponding item in C<training_set>. i.e. C<distribution> is P(X = t_i) where t_i is i-th item in C<training_set>. |
198
|
|
|
|
|
|
|
|
199
|
|
|
|
|
|
|
The generated classifier is expected to be a CodeRef which takes 1 argument (value of C<feature>) and return C<+1> or C<-1> as a output label. |
200
|
|
|
|
|
|
|
|
201
|
|
|
|
|
|
|
=back |
202
|
|
|
|
|
|
|
|
203
|
|
|
|
|
|
|
Either of both can be overriden temporarily with parameters for C<train>. |
204
|
|
|
|
|
|
|
|
205
|
|
|
|
|
|
|
=head2 classify |
206
|
|
|
|
|
|
|
|
207
|
|
|
|
|
|
|
Shorthand for C<< $learner->final_classifier->classify >>. |
208
|
|
|
|
|
|
|
|
209
|
|
|
|
|
|
|
=head2 final_classifier |
210
|
|
|
|
|
|
|
|
211
|
|
|
|
|
|
|
Returns the last constructed classifier. |
212
|
|
|
|
|
|
|
|
213
|
|
|
|
|
|
|
=head2 train |
214
|
|
|
|
|
|
|
|
215
|
|
|
|
|
|
|
Constructs a stronger classifier from given training set and weak learning algorithm. |
216
|
|
|
|
|
|
|
|
217
|
|
|
|
|
|
|
This method takes 1 mandatory parameter: |
218
|
|
|
|
|
|
|
|
219
|
|
|
|
|
|
|
=over 2 |
220
|
|
|
|
|
|
|
|
221
|
|
|
|
|
|
|
=item num_iterations |
222
|
|
|
|
|
|
|
|
223
|
|
|
|
|
|
|
Specifies how many training iterations to be excuted (i.e., how many weak classifiers to be generated). |
224
|
|
|
|
|
|
|
|
225
|
|
|
|
|
|
|
=back |
226
|
|
|
|
|
|
|
|
227
|
|
|
|
|
|
|
and 2 optional parameters: |
228
|
|
|
|
|
|
|
|
229
|
|
|
|
|
|
|
=over 2 |
230
|
|
|
|
|
|
|
|
231
|
|
|
|
|
|
|
=item training_set |
232
|
|
|
|
|
|
|
|
233
|
|
|
|
|
|
|
=item weak_classifier_generator |
234
|
|
|
|
|
|
|
|
235
|
|
|
|
|
|
|
=back |
236
|
|
|
|
|
|
|
|
237
|
|
|
|
|
|
|
If the optional parameters are ommited, parameters specified to C<new> are used as defaults. If constructor parameters are ommited too, an exception will be raised. |
238
|
|
|
|
|
|
|
|
239
|
|
|
|
|
|
|
=head2 trained |
240
|
|
|
|
|
|
|
|
241
|
|
|
|
|
|
|
True if C<train> method have called, false otherwise. |
242
|
|
|
|
|
|
|
|
243
|
|
|
|
|
|
|
=head1 AUTHOR |
244
|
|
|
|
|
|
|
|
245
|
|
|
|
|
|
|
Koichi SATOH E<lt>sekia@cpan.orgE<gt> |
246
|
|
|
|
|
|
|
|
247
|
|
|
|
|
|
|
=head1 SEE ALSO |
248
|
|
|
|
|
|
|
|
249
|
|
|
|
|
|
|
L<A Short Introduction to Boosting|http://www.site.uottawa.ca/~stan/csi5387/boost-tut-ppr.pdf> |
250
|
|
|
|
|
|
|
|
251
|
|
|
|
|
|
|
=head1 LICENSE |
252
|
|
|
|
|
|
|
|
253
|
|
|
|
|
|
|
The MIT License |
254
|
|
|
|
|
|
|
|
255
|
|
|
|
|
|
|
Copyright (C) 2012 by Koichi SATOH |
256
|
|
|
|
|
|
|
|
257
|
|
|
|
|
|
|
Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: |
258
|
|
|
|
|
|
|
|
259
|
|
|
|
|
|
|
The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. |
260
|
|
|
|
|
|
|
|
261
|
|
|
|
|
|
|
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. |
262
|
|
|
|
|
|
|
|
263
|
|
|
|
|
|
|
=cut |