line |
stmt |
bran |
cond |
sub |
pod |
time |
code |
1
|
|
|
|
|
|
|
package Algorithm::AM::Batch; |
2
|
4
|
|
|
4
|
|
47719
|
use strict; |
|
4
|
|
|
|
|
27
|
|
|
4
|
|
|
|
|
94
|
|
3
|
4
|
|
|
4
|
|
16
|
use warnings; |
|
4
|
|
|
|
|
6
|
|
|
4
|
|
|
|
|
137
|
|
4
|
|
|
|
|
|
|
our $VERSION = '3.11'; |
5
|
|
|
|
|
|
|
# ABSTRACT: Classify items in batch mode |
6
|
4
|
|
|
4
|
|
18
|
use feature 'state'; |
|
4
|
|
|
|
|
7
|
|
|
4
|
|
|
|
|
323
|
|
7
|
4
|
|
|
4
|
|
18
|
use Carp; |
|
4
|
|
|
|
|
6
|
|
|
4
|
|
|
|
|
229
|
|
8
|
4
|
|
|
4
|
|
825
|
use Log::Any qw($log); |
|
4
|
|
|
|
|
22510
|
|
|
4
|
|
|
|
|
15
|
|
9
|
|
|
|
|
|
|
our @CARP_NOT = qw(Algorithm::AM::Batch); |
10
|
|
|
|
|
|
|
|
11
|
|
|
|
|
|
|
# Place this accessor here so that Class::Tiny doesn't generate |
12
|
|
|
|
|
|
|
# a getter/setter pair. |
13
|
|
|
|
|
|
|
sub test_set { |
14
|
38
|
|
|
38
|
1
|
446
|
my ($self) = @_; |
15
|
38
|
|
|
|
|
110
|
return $self->{test_set}; |
16
|
|
|
|
|
|
|
} |
17
|
|
|
|
|
|
|
|
18
|
4
|
|
|
|
|
27
|
use Class::Tiny qw( |
19
|
|
|
|
|
|
|
training_set |
20
|
|
|
|
|
|
|
|
21
|
|
|
|
|
|
|
exclude_nulls |
22
|
|
|
|
|
|
|
exclude_given |
23
|
|
|
|
|
|
|
linear |
24
|
|
|
|
|
|
|
probability |
25
|
|
|
|
|
|
|
repeat |
26
|
|
|
|
|
|
|
max_training_items |
27
|
|
|
|
|
|
|
|
28
|
|
|
|
|
|
|
begin_hook |
29
|
|
|
|
|
|
|
begin_test_hook |
30
|
|
|
|
|
|
|
begin_repeat_hook |
31
|
|
|
|
|
|
|
training_item_hook |
32
|
|
|
|
|
|
|
end_repeat_hook |
33
|
|
|
|
|
|
|
end_test_hook |
34
|
|
|
|
|
|
|
end_hook |
35
|
|
|
|
|
|
|
|
36
|
|
|
|
|
|
|
test_set |
37
|
|
|
|
|
|
|
), { |
38
|
|
|
|
|
|
|
exclude_nulls => 1, |
39
|
|
|
|
|
|
|
exclude_given => 1, |
40
|
|
|
|
|
|
|
linear => 0, |
41
|
|
|
|
|
|
|
probability => 1, |
42
|
|
|
|
|
|
|
repeat => 1, |
43
|
4
|
|
|
4
|
|
6925
|
}; |
|
4
|
|
|
|
|
5264
|
|
44
|
|
|
|
|
|
|
|
45
|
4
|
|
|
4
|
|
6746
|
use Algorithm::AM; |
|
4
|
|
|
|
|
12
|
|
|
4
|
|
|
|
|
19
|
|
46
|
4
|
|
|
4
|
|
27
|
use Algorithm::AM::Result; |
|
4
|
|
|
|
|
8
|
|
|
4
|
|
|
|
|
82
|
|
47
|
4
|
|
|
4
|
|
17
|
use Algorithm::AM::BigInt 'bigcmp'; |
|
4
|
|
|
|
|
6
|
|
|
4
|
|
|
|
|
119
|
|
48
|
4
|
|
|
4
|
|
23
|
use Algorithm::AM::DataSet; |
|
4
|
|
|
|
|
8
|
|
|
4
|
|
|
|
|
112
|
|
49
|
4
|
|
|
4
|
|
24
|
use Import::Into; |
|
4
|
|
|
|
|
7
|
|
|
4
|
|
|
|
|
4502
|
|
50
|
|
|
|
|
|
|
# Use Import::Into to export classes into caller |
51
|
|
|
|
|
|
|
sub import { |
52
|
4
|
|
|
4
|
|
39
|
my $target = caller; |
53
|
4
|
|
|
|
|
24
|
Algorithm::AM::BigInt->import::into($target, 'bigcmp'); |
54
|
4
|
|
|
|
|
943
|
Algorithm::AM::DataSet->import::into($target, 'dataset_from_file'); |
55
|
4
|
|
|
|
|
667
|
Algorithm::AM::DataSet::Item->import::into($target, 'new_item'); |
56
|
4
|
|
|
|
|
2713
|
return; |
57
|
|
|
|
|
|
|
} |
58
|
|
|
|
|
|
|
|
59
|
|
|
|
|
|
|
sub BUILD { |
60
|
14
|
|
|
14
|
0
|
2308
|
my ($self, $args) = @_; |
61
|
|
|
|
|
|
|
|
62
|
|
|
|
|
|
|
# check for invalid arguments |
63
|
14
|
|
|
|
|
24
|
my $class = ref $self; |
64
|
14
|
|
|
|
|
33
|
my %valid_attrs = map {$_ => 1} |
|
210
|
|
|
|
|
697
|
|
65
|
|
|
|
|
|
|
Class::Tiny->get_all_attributes_for($class); |
66
|
14
|
|
|
|
|
57
|
my @invalids = grep {!$valid_attrs{$_}} sort keys %$args; |
|
40
|
|
|
|
|
69
|
|
67
|
14
|
100
|
|
|
|
35
|
if(@invalids){ |
68
|
1
|
|
|
|
|
10
|
croak "Invalid attributes for $class: " . join ' ', |
69
|
|
|
|
|
|
|
sort @invalids; |
70
|
|
|
|
|
|
|
} |
71
|
|
|
|
|
|
|
|
72
|
13
|
100
|
|
|
|
30
|
if(!exists $args->{training_set}){ |
73
|
1
|
|
|
|
|
13
|
croak "Missing required parameter 'training_set'"; |
74
|
|
|
|
|
|
|
} |
75
|
12
|
100
|
66
|
|
|
90
|
if(!(ref $args) || !$args->{training_set}->isa( |
76
|
|
|
|
|
|
|
'Algorithm::AM::DataSet')){ |
77
|
1
|
|
|
|
|
31
|
croak 'Parameter training_set should be an ' . |
78
|
|
|
|
|
|
|
'Algorithm::AM::DataSet'; |
79
|
|
|
|
|
|
|
} |
80
|
11
|
|
|
|
|
26
|
for(qw( |
81
|
|
|
|
|
|
|
begin_hook |
82
|
|
|
|
|
|
|
begin_test_hook |
83
|
|
|
|
|
|
|
begin_repeat_hook |
84
|
|
|
|
|
|
|
training_item_hook |
85
|
|
|
|
|
|
|
end_repeat_hook |
86
|
|
|
|
|
|
|
end_test_hook |
87
|
|
|
|
|
|
|
end_hook |
88
|
|
|
|
|
|
|
)){ |
89
|
77
|
50
|
66
|
|
|
155
|
if(exists $args->{$_} and 'CODE' ne ref $args->{$_}){ |
90
|
0
|
|
|
|
|
0
|
croak "Input $_ should be a subroutine"; |
91
|
|
|
|
|
|
|
} |
92
|
|
|
|
|
|
|
} |
93
|
|
|
|
|
|
|
|
94
|
11
|
|
|
|
|
28
|
return; |
95
|
|
|
|
|
|
|
} |
96
|
|
|
|
|
|
|
|
97
|
|
|
|
|
|
|
sub classify_all { |
98
|
7
|
|
|
7
|
1
|
38
|
my ($self, $test_set) = @_; |
99
|
|
|
|
|
|
|
|
100
|
7
|
100
|
100
|
|
|
35
|
if(!$test_set || 'Algorithm::AM::DataSet' ne ref $test_set){ |
101
|
2
|
|
|
|
|
15
|
croak q[Must provide a DataSet to classify_all]; |
102
|
|
|
|
|
|
|
} |
103
|
5
|
100
|
|
|
|
130
|
if($self->training_set->cardinality != $test_set->cardinality){ |
104
|
1
|
|
|
|
|
15
|
croak 'Training and test sets do not have the same ' . |
105
|
|
|
|
|
|
|
'cardinality (' . $self->training_set->cardinality . |
106
|
|
|
|
|
|
|
' and ' . $test_set->cardinality . ')'; |
107
|
|
|
|
|
|
|
} |
108
|
4
|
|
|
|
|
16
|
$self->_set_test_set($test_set); |
109
|
|
|
|
|
|
|
|
110
|
4
|
100
|
|
|
|
64
|
if($self->begin_hook){ |
111
|
1
|
|
|
|
|
18
|
$self->begin_hook->($self); |
112
|
|
|
|
|
|
|
} |
113
|
|
|
|
|
|
|
|
114
|
|
|
|
|
|
|
# save the result objects from all items, all iterations, here |
115
|
4
|
|
|
|
|
1793
|
my @all_results; |
116
|
|
|
|
|
|
|
|
117
|
4
|
|
|
|
|
16
|
foreach my $item_number (0 .. $test_set->size - 1) { |
118
|
178
|
50
|
|
|
|
565
|
if($log->is_debug){ |
119
|
0
|
|
|
|
|
0
|
$log->debug('Test items left: ' . |
120
|
|
|
|
|
|
|
$test_set->size + 1 - $item_number); |
121
|
|
|
|
|
|
|
} |
122
|
178
|
|
|
|
|
1527
|
my $test_item = $test_set->get_item($item_number); |
123
|
|
|
|
|
|
|
# store the results just for this item |
124
|
178
|
|
|
|
|
258
|
my @item_results; |
125
|
|
|
|
|
|
|
|
126
|
178
|
100
|
|
|
|
2613
|
if($self->begin_test_hook){ |
127
|
2
|
|
|
|
|
39
|
$self->begin_test_hook->($self, $test_item); |
128
|
|
|
|
|
|
|
} |
129
|
|
|
|
|
|
|
|
130
|
178
|
50
|
|
|
|
2614
|
if($log->is_debug){ |
131
|
0
|
|
|
|
|
0
|
my ( $sec, $min, $hour ) = localtime(); |
132
|
0
|
|
|
|
|
0
|
$log->info( |
133
|
|
|
|
|
|
|
sprintf( "Time: %2s:%02s:%02s\n", $hour, $min, $sec) . |
134
|
|
|
|
|
|
|
$test_item->comment . "\n" . |
135
|
|
|
|
|
|
|
sprintf( "0/$self->{repeat} %2s:%02s:%02s", |
136
|
|
|
|
|
|
|
$hour, $min, $sec ) ); |
137
|
|
|
|
|
|
|
} |
138
|
|
|
|
|
|
|
|
139
|
178
|
|
|
|
|
1115
|
my $iteration = 1; |
140
|
178
|
|
|
|
|
2307
|
while ( $iteration <= $self->repeat ) { |
141
|
182
|
100
|
|
|
|
3190
|
if($self->begin_repeat_hook){ |
142
|
4
|
|
|
|
|
106
|
$self->begin_repeat_hook->( |
143
|
|
|
|
|
|
|
$self, $test_item, $iteration); |
144
|
|
|
|
|
|
|
} |
145
|
|
|
|
|
|
|
|
146
|
|
|
|
|
|
|
# this sets excluded_items |
147
|
182
|
|
|
|
|
4368
|
my ($training_set, $excluded_items) = $self->_make_training_set( |
148
|
|
|
|
|
|
|
$test_item, $iteration); |
149
|
|
|
|
|
|
|
|
150
|
|
|
|
|
|
|
# classify the item with the given training set and |
151
|
|
|
|
|
|
|
# configuration |
152
|
182
|
|
|
|
|
2494
|
my $am = Algorithm::AM->new( |
153
|
|
|
|
|
|
|
training_set => $training_set, |
154
|
|
|
|
|
|
|
exclude_nulls => $self->exclude_nulls, |
155
|
|
|
|
|
|
|
exclude_given => $self->exclude_given, |
156
|
|
|
|
|
|
|
linear => $self->linear, |
157
|
|
|
|
|
|
|
); |
158
|
182
|
|
|
|
|
1171
|
my $result = $am->classify($test_item); |
159
|
|
|
|
|
|
|
|
160
|
182
|
50
|
|
|
|
656
|
_log_result($result) |
161
|
|
|
|
|
|
|
if($log->is_info); |
162
|
|
|
|
|
|
|
|
163
|
182
|
50
|
|
|
|
1713
|
if($log->is_info){ |
164
|
0
|
|
|
|
|
0
|
my ( $sec, $min, $hour ) = localtime(); |
165
|
0
|
|
|
|
|
0
|
$log->info( |
166
|
|
|
|
|
|
|
sprintf( |
167
|
|
|
|
|
|
|
$iteration . '/' . $self->repeat . |
168
|
|
|
|
|
|
|
' %2s:%02s:%02s', |
169
|
|
|
|
|
|
|
$hour, $min, $sec |
170
|
|
|
|
|
|
|
) |
171
|
|
|
|
|
|
|
); |
172
|
|
|
|
|
|
|
} |
173
|
|
|
|
|
|
|
|
174
|
182
|
100
|
|
|
|
3723
|
if($self->end_repeat_hook){ |
175
|
|
|
|
|
|
|
# pass in self, test item, data, and result |
176
|
5
|
|
|
|
|
86
|
$self->end_repeat_hook->($self, $test_item, |
177
|
|
|
|
|
|
|
$iteration, $excluded_items, $result); |
178
|
|
|
|
|
|
|
} |
179
|
182
|
|
|
|
|
9706
|
push @item_results, $result; |
180
|
182
|
|
|
|
|
777
|
$iteration++; |
181
|
|
|
|
|
|
|
} |
182
|
|
|
|
|
|
|
|
183
|
178
|
100
|
|
|
|
8798
|
if($self->end_test_hook){ |
184
|
175
|
|
|
|
|
2974
|
$self->end_test_hook->($self, $test_item, @item_results); |
185
|
|
|
|
|
|
|
} |
186
|
|
|
|
|
|
|
|
187
|
178
|
|
|
|
|
7166
|
push @all_results, @item_results; |
188
|
|
|
|
|
|
|
} |
189
|
|
|
|
|
|
|
|
190
|
4
|
50
|
|
|
|
15
|
if($log->is_info){ |
191
|
0
|
|
|
|
|
0
|
my ( $sec, $min, $hour ) = localtime(); |
192
|
0
|
|
|
|
|
0
|
$log->info( |
193
|
|
|
|
|
|
|
sprintf( "Time: %2s:%02s:%02s", $hour, $min, $sec ) ); |
194
|
|
|
|
|
|
|
} |
195
|
|
|
|
|
|
|
|
196
|
4
|
100
|
|
|
|
100
|
if($self->end_hook){ |
197
|
1
|
|
|
|
|
20
|
$self->end_hook->($self, @all_results); |
198
|
|
|
|
|
|
|
} |
199
|
4
|
|
|
|
|
3775
|
$self->_set_test_set(undef); |
200
|
4
|
|
|
|
|
18
|
return @all_results; |
201
|
|
|
|
|
|
|
} |
202
|
|
|
|
|
|
|
|
203
|
|
|
|
|
|
|
# log the summary printouts from the input result object |
204
|
|
|
|
|
|
|
sub _log_result { |
205
|
0
|
|
|
0
|
|
0
|
my ($result) = @_; |
206
|
|
|
|
|
|
|
|
207
|
0
|
|
|
|
|
0
|
$log->info(${$result->statistical_summary}); |
|
0
|
|
|
|
|
0
|
|
208
|
|
|
|
|
|
|
|
209
|
0
|
|
|
|
|
0
|
$log->info(${$result->analogical_set_summary()}); |
|
0
|
|
|
|
|
0
|
|
210
|
|
|
|
|
|
|
|
211
|
0
|
0
|
|
|
|
0
|
if($log->is_debug){ |
|
|
0
|
|
|
|
|
|
212
|
0
|
|
|
|
|
0
|
$log->debug(${ $result->gang_summary(1) }); |
|
0
|
|
|
|
|
0
|
|
213
|
|
|
|
|
|
|
}elsif($log->is_info){ |
214
|
0
|
|
|
|
|
0
|
$log->info(${ $result->gang_summary(0) }) |
|
0
|
|
|
|
|
0
|
|
215
|
|
|
|
|
|
|
} |
216
|
0
|
|
|
|
|
0
|
return; |
217
|
|
|
|
|
|
|
} |
218
|
|
|
|
|
|
|
|
219
|
|
|
|
|
|
|
# create the training set for this iteration, calling training_item_hook and |
220
|
|
|
|
|
|
|
# updating excluded_items along the way |
221
|
|
|
|
|
|
|
sub _make_training_set { |
222
|
182
|
|
|
182
|
|
391
|
my ($self, $test_item, $iteration) = @_; |
223
|
182
|
|
|
|
|
338
|
my $training_set; |
224
|
|
|
|
|
|
|
|
225
|
|
|
|
|
|
|
# $self->_set_excluded_items([]); |
226
|
|
|
|
|
|
|
my @excluded_items; |
227
|
|
|
|
|
|
|
# Cap the amount of considered data if specified |
228
|
182
|
100
|
|
|
|
2600
|
my $max = defined $self->max_training_items ? |
229
|
|
|
|
|
|
|
int($self->max_training_items) : |
230
|
|
|
|
|
|
|
$self->training_set->size; |
231
|
|
|
|
|
|
|
|
232
|
|
|
|
|
|
|
# use the original DataSet object if there are no settings |
233
|
|
|
|
|
|
|
# that would trim items from it |
234
|
182
|
100
|
66
|
|
|
2687
|
if(!$self->training_item_hook && |
|
|
|
66
|
|
|
|
|
235
|
|
|
|
|
|
|
($self->probability == 1) && |
236
|
|
|
|
|
|
|
$max >= $self->training_set->size){ |
237
|
177
|
|
|
|
|
2270
|
$training_set = $self->training_set; |
238
|
|
|
|
|
|
|
}else{ |
239
|
|
|
|
|
|
|
# otherwise, make a new set with just the selected |
240
|
|
|
|
|
|
|
# items |
241
|
5
|
|
|
|
|
96
|
$training_set = Algorithm::AM::DataSet->new( |
242
|
|
|
|
|
|
|
cardinality => $self->training_set->cardinality); |
243
|
|
|
|
|
|
|
|
244
|
|
|
|
|
|
|
# don't try to add more items than we have! |
245
|
5
|
100
|
|
|
|
75
|
my $num_items = ($max > $self->training_set->size) ? |
246
|
|
|
|
|
|
|
$self->training_set->size : |
247
|
|
|
|
|
|
|
$max; |
248
|
5
|
|
|
|
|
19
|
for my $data_index ( 0 .. $num_items - 1 ) { |
249
|
25
|
|
|
|
|
366
|
my $training_item = |
250
|
|
|
|
|
|
|
$self->training_set->get_item($data_index); |
251
|
|
|
|
|
|
|
# skip this data item if the training_item_hook returns false |
252
|
25
|
100
|
66
|
|
|
325
|
if($self->training_item_hook && |
253
|
|
|
|
|
|
|
!$self->training_item_hook->($self, |
254
|
|
|
|
|
|
|
$test_item, $iteration, $training_item) |
255
|
|
|
|
|
|
|
){ |
256
|
5
|
|
|
|
|
98
|
push @excluded_items, $training_item; |
257
|
5
|
|
|
|
|
9
|
next; |
258
|
|
|
|
|
|
|
} |
259
|
|
|
|
|
|
|
# skip this data item with probability $self->{probability} |
260
|
20
|
50
|
33
|
|
|
24592
|
if($self->probability != 1 && |
261
|
|
|
|
|
|
|
rand() > $self->probability){ |
262
|
0
|
|
|
|
|
0
|
push @excluded_items, $training_item; |
263
|
0
|
|
|
|
|
0
|
next; |
264
|
|
|
|
|
|
|
} |
265
|
20
|
|
|
|
|
155
|
$training_set->add_item($training_item); |
266
|
|
|
|
|
|
|
} |
267
|
|
|
|
|
|
|
} |
268
|
|
|
|
|
|
|
# $self->_set_excluded_items(\@excluded_items); |
269
|
182
|
|
|
|
|
1017
|
return ($training_set, \@excluded_items); |
270
|
|
|
|
|
|
|
} |
271
|
|
|
|
|
|
|
|
272
|
|
|
|
|
|
|
sub _set_test_set { |
273
|
8
|
|
|
8
|
|
20
|
my ($self, $test_set) = @_; |
274
|
8
|
|
|
|
|
16
|
$self->{test_set} = $test_set; |
275
|
8
|
|
|
|
|
11
|
return; |
276
|
|
|
|
|
|
|
} |
277
|
|
|
|
|
|
|
|
278
|
|
|
|
|
|
|
1; |
279
|
|
|
|
|
|
|
|
280
|
|
|
|
|
|
|
__END__ |