File Coverage

time64.c
Criterion Covered Total %
statement 114 130 87.7
branch 77 216 35.6
condition n/a
subroutine n/a
total 191 346 55.2


line stmt bran cond sub time code
1           /*
2            
3           Copyright (c) 2007-2008 Michael G Schwern
4            
5           This software originally derived from Paul Sheer's pivotal_gmtime_r.c.
6            
7           The MIT License:
8            
9           Permission is hereby granted, free of charge, to any person obtaining a copy
10           of this software and associated documentation files (the "Software"), to deal
11           in the Software without restriction, including without limitation the rights
12           to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
13           copies of the Software, and to permit persons to whom the Software is
14           furnished to do so, subject to the following conditions:
15            
16           The above copyright notice and this permission notice shall be included in
17           all copies or substantial portions of the Software.
18            
19           THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
20           IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
21           FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
22           AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
23           LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
24           OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
25           THE SOFTWARE.
26            
27           */
28            
29           /*
30            
31           Programmers who have available to them 64-bit time values as a 'long
32           long' type can use localtime64_r() and gmtime64_r() which correctly
33           converts the time even on 32-bit systems. Whether you have 64-bit time
34           values will depend on the operating system.
35            
36           S_localtime64_r() is a 64-bit equivalent of localtime_r().
37            
38           S_gmtime64_r() is a 64-bit equivalent of gmtime_r().
39            
40           */
41            
42           #include "time64.h"
43            
44           static const int days_in_month[2][12] = {
45           {31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31},
46           {31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31},
47           };
48            
49           static const int julian_days_by_month[2][12] = {
50           {0, 31, 59, 90, 120, 151, 181, 212, 243, 273, 304, 334},
51           {0, 31, 60, 91, 121, 152, 182, 213, 244, 274, 305, 335},
52           };
53            
54           static const int length_of_year[2] = { 365, 366 };
55            
56           /* Number of days in a 400 year Gregorian cycle */
57           static const Year years_in_gregorian_cycle = 400;
58           static const int days_in_gregorian_cycle = (365 * 400) + 100 - 4 + 1;
59            
60           /* 28 year calendar cycle between 2010 and 2037 */
61           #define SOLAR_CYCLE_LENGTH 28
62           static const int safe_years[SOLAR_CYCLE_LENGTH] = {
63           2016, 2017, 2018, 2019,
64           2020, 2021, 2022, 2023,
65           2024, 2025, 2026, 2027,
66           2028, 2029, 2030, 2031,
67           2032, 2033, 2034, 2035,
68           2036, 2037, 2010, 2011,
69           2012, 2013, 2014, 2015
70           };
71            
72           static const int dow_year_start[SOLAR_CYCLE_LENGTH] = {
73           5, 0, 1, 2, /* 0 2016 - 2019 */
74           3, 5, 6, 0, /* 4 */
75           1, 3, 4, 5, /* 8 */
76           6, 1, 2, 3, /* 12 */
77           4, 6, 0, 1, /* 16 */
78           2, 4, 5, 6, /* 20 2036, 2037, 2010, 2011 */
79           0, 2, 3, 4 /* 24 2012, 2013, 2014, 2015 */
80           };
81            
82           /* Let's assume people are going to be looking for dates in the future.
83           Let's provide some cheats so you can skip ahead.
84           This has a 4x speed boost when near 2008.
85           */
86           /* Number of days since epoch on Jan 1st, 2008 GMT */
87           #define CHEAT_DAYS (1199145600 / 24 / 60 / 60)
88           #define CHEAT_YEARS 108
89            
90           #define IS_LEAP(n) ((!(((n) + 1900) % 400) || (!(((n) + 1900) % 4) && (((n) + 1900) % 100))) != 0)
91           #define WRAP(a,b,m) ((a) = ((a) < 0 ) ? ((b)--, (a) + (m)) : (a))
92            
93           #ifdef USE_SYSTEM_LOCALTIME
94           # define SHOULD_USE_SYSTEM_LOCALTIME(a) ( \
95           (a) <= SYSTEM_LOCALTIME_MAX && \
96           (a) >= SYSTEM_LOCALTIME_MIN \
97           )
98           #else
99           # define SHOULD_USE_SYSTEM_LOCALTIME(a) (0)
100           #endif
101            
102           #ifdef USE_SYSTEM_GMTIME
103           # define SHOULD_USE_SYSTEM_GMTIME(a) ( \
104           (a) <= SYSTEM_GMTIME_MAX && \
105           (a) >= SYSTEM_GMTIME_MIN \
106           )
107           #else
108           # define SHOULD_USE_SYSTEM_GMTIME(a) (0)
109           #endif
110            
111           /* Multi varadic macros are a C99 thing, alas */
112           #ifdef TIME_64_DEBUG
113           # define TIME64_TRACE(format) (fprintf(stderr, format))
114           # define TIME64_TRACE1(format, var1) (fprintf(stderr, format, var1))
115           # define TIME64_TRACE2(format, var1, var2) (fprintf(stderr, format, var1, var2))
116           # define TIME64_TRACE3(format, var1, var2, var3) (fprintf(stderr, format, var1, var2, var3))
117           #else
118           # define TIME64_TRACE(format) ((void)0)
119           # define TIME64_TRACE1(format, var1) ((void)0)
120           # define TIME64_TRACE2(format, var1, var2) ((void)0)
121           # define TIME64_TRACE3(format, var1, var2, var3) ((void)0)
122           #endif
123            
124           static int S_is_exception_century(Year year)
125           {
126 28 50       int is_exception = ((year % 100 == 0) && !(year % 400 == 0));
    0        
    50        
    0        
    0        
    0        
    0        
    0        
127           TIME64_TRACE1("# is_exception_century: %s\n", is_exception ? "yes" : "no");
128            
129           return(is_exception);
130           }
131            
132            
133 14         static Time64_T S_timegm64(struct TM *date) {
134           int days = 0;
135           Time64_T seconds = 0;
136           Year year;
137            
138 14 50       if( date->tm_year > 70 ) {
139           year = 70;
140 688 100       while( year < date->tm_year ) {
141 674 100       days += length_of_year[IS_LEAP(year)];
    100        
    50        
142 674         year++;
143           }
144           }
145 0 0       else if ( date->tm_year < 70 ) {
146           year = 69;
147           do {
148 0 0       days -= length_of_year[IS_LEAP(year)];
    0        
    0        
149 0         year--;
150 0 0       } while( year >= date->tm_year );
151           }
152            
153 14 50       days += julian_days_by_month[IS_LEAP(date->tm_year)][date->tm_mon];
    50        
    0        
154 14         days += date->tm_mday - 1;
155            
156           /* Avoid overflowing the days integer */
157 14         seconds = days;
158 14         seconds = seconds * 60 * 60 * 24;
159            
160 14         seconds += date->tm_hour * 60 * 60;
161 14         seconds += date->tm_min * 60;
162 14         seconds += date->tm_sec;
163            
164 14         return(seconds);
165           }
166            
167            
168           #ifdef DEBUGGING
169           static int S_check_tm(struct TM *tm)
170           {
171           /* Don't forget leap seconds */
172           assert(tm->tm_sec >= 0);
173           assert(tm->tm_sec <= 61);
174            
175           assert(tm->tm_min >= 0);
176           assert(tm->tm_min <= 59);
177            
178           assert(tm->tm_hour >= 0);
179           assert(tm->tm_hour <= 23);
180            
181           assert(tm->tm_mday >= 1);
182           assert(tm->tm_mday <= days_in_month[IS_LEAP(tm->tm_year)][tm->tm_mon]);
183            
184           assert(tm->tm_mon >= 0);
185           assert(tm->tm_mon <= 11);
186            
187           assert(tm->tm_wday >= 0);
188           assert(tm->tm_wday <= 6);
189            
190           assert(tm->tm_yday >= 0);
191           assert(tm->tm_yday <= length_of_year[IS_LEAP(tm->tm_year)]);
192            
193           #ifdef HAS_TM_TM_GMTOFF
194           assert(tm->tm_gmtoff >= -24 * 60 * 60);
195           assert(tm->tm_gmtoff <= 24 * 60 * 60);
196           #endif
197            
198           return 1;
199           }
200           #endif
201            
202            
203           /* The exceptional centuries without leap years cause the cycle to
204           shift by 16
205           */
206           static Year S_cycle_offset(Year year)
207           {
208           const Year start_year = 2000;
209 14         Year year_diff = year - start_year;
210           Year exceptions;
211            
212 14 50       if( year > start_year )
    0        
213 0         year_diff--;
214            
215 14         exceptions = year_diff / 100;
216 14         exceptions -= year_diff / 400;
217            
218           TIME64_TRACE3("# year: %lld, exceptions: %lld, year_diff: %lld\n",
219           year, exceptions, year_diff);
220            
221 14         return exceptions * 16;
222           }
223            
224           /* For a given year after 2038, pick the latest possible matching
225           year in the 28 year calendar cycle.
226            
227           A matching year...
228           1) Starts on the same day of the week.
229           2) Has the same leap year status.
230            
231           This is so the calendars match up.
232            
233           Also the previous year must match. When doing Jan 1st you might
234           wind up on Dec 31st the previous year when doing a -UTC time zone.
235            
236           Finally, the next year must have the same start day of week. This
237           is for Dec 31st with a +UTC time zone.
238           It doesn't need the same leap year status since we only care about
239           January 1st.
240           */
241           static int S_safe_year(Year year)
242           {
243           int safe_year;
244 14         Year year_cycle = year + S_cycle_offset(year);
245            
246           /* Change non-leap xx00 years to an equivalent */
247 14 50       if( S_is_exception_century(year) )
    0        
248 0         year_cycle += 11;
249            
250           /* Also xx01 years, since the previous year will be wrong */
251 21 50       if( S_is_exception_century(year - 1) )
    0        
252 0         year_cycle += 17;
253            
254 14         year_cycle %= SOLAR_CYCLE_LENGTH;
255 14 50       if( year_cycle < 0 )
    0        
256 14         year_cycle = SOLAR_CYCLE_LENGTH + year_cycle;
257            
258           assert( year_cycle >= 0 );
259           assert( year_cycle < SOLAR_CYCLE_LENGTH );
260 14         safe_year = safe_years[year_cycle];
261            
262           assert(safe_year <= 2037 && safe_year >= 2010);
263            
264           TIME64_TRACE3("# year: %lld, year_cycle: %lld, safe_year: %d\n",
265           year, year_cycle, safe_year);
266            
267           return safe_year;
268           }
269            
270            
271           static void S_copy_little_tm_to_big_TM(const struct tm *src, struct TM *dest) {
272           assert(src);
273           assert(dest);
274           #ifdef USE_TM64
275 2364         dest->tm_sec = src->tm_sec;
276 2364         dest->tm_min = src->tm_min;
277 2364         dest->tm_hour = src->tm_hour;
278 2364         dest->tm_mday = src->tm_mday;
279 2364         dest->tm_mon = src->tm_mon;
280 2364         dest->tm_year = (Year)src->tm_year;
281 2364         dest->tm_wday = src->tm_wday;
282 2364         dest->tm_yday = src->tm_yday;
283 2364         dest->tm_isdst = src->tm_isdst;
284            
285           # ifdef HAS_TM_TM_GMTOFF
286 2364         dest->tm_gmtoff = src->tm_gmtoff;
287           # endif
288            
289           # ifdef HAS_TM_TM_ZONE
290 2357         dest->tm_zone = src->tm_zone;
291           # endif
292            
293           #else
294           /* They're the same type */
295           memcpy(dest, src, sizeof(*dest));
296           #endif
297           }
298            
299            
300           #ifndef HAS_LOCALTIME_R
301           /* Simulate localtime_r() to the best of our ability */
302 2364         static struct tm * S_localtime_r(const time_t *clock, struct tm *result) {
303           #ifdef VMS
304           dTHX; /* in case the following is defined as Perl_my_localtime(aTHX_ ...) */
305           #endif
306 2364         const struct tm *static_result = localtime(clock);
307            
308           assert(result != NULL);
309            
310 2364 50       if( static_result == NULL ) {
311           memset(result, 0, sizeof(*result));
312 0         return NULL;
313           }
314           else {
315 2364         memcpy(result, static_result, sizeof(*result));
316 2364         return result;
317           }
318           }
319           #endif
320            
321           #ifndef HAS_GMTIME_R
322           /* Simulate gmtime_r() to the best of our ability */
323           static struct tm * S_gmtime_r(const time_t *clock, struct tm *result) {
324           dTHX; /* in case the following is defined as Perl_my_gmtime(aTHX_ ...) */
325           const struct tm *static_result = gmtime(clock);
326            
327           assert(result != NULL);
328            
329           if( static_result == NULL ) {
330           memset(result, 0, sizeof(*result));
331           return NULL;
332           }
333           else {
334           memcpy(result, static_result, sizeof(*result));
335           return result;
336           }
337           }
338           #endif
339            
340 618         static struct TM *S_gmtime64_r (const Time64_T *in_time, struct TM *p)
341           {
342           int v_tm_sec, v_tm_min, v_tm_hour, v_tm_mon, v_tm_wday;
343           Time64_T v_tm_tday;
344           int leap;
345           Time64_T m;
346 618         Time64_T time = *in_time;
347           Year year = 70;
348           int cycles = 0;
349            
350           assert(p != NULL);
351            
352           /* Use the system gmtime() if time_t is small enough */
353           if( SHOULD_USE_SYSTEM_GMTIME(*in_time) ) {
354           time_t safe_time = (time_t)*in_time;
355           struct tm safe_date;
356           GMTIME_R(&safe_time, &safe_date);
357            
358           S_copy_little_tm_to_big_TM(&safe_date, p);
359           assert(S_check_tm(p));
360            
361           return p;
362           }
363            
364           #ifdef HAS_TM_TM_GMTOFF
365 618         p->tm_gmtoff = 0;
366           #endif
367 618         p->tm_isdst = 0;
368            
369           #ifdef HAS_TM_TM_ZONE
370 618         p->tm_zone = (char *)"UTC";
371           #endif
372            
373 618         v_tm_sec = (int)fmod(time, 60.0);
374 618 100       time = time >= 0 ? floor(time / 60.0) : ceil(time / 60.0);
    0        
375 618         v_tm_min = (int)fmod(time, 60.0);
376 618 100       time = time >= 0 ? floor(time / 60.0) : ceil(time / 60.0);
    0        
377 618         v_tm_hour = (int)fmod(time, 24.0);
378 618 100       time = time >= 0 ? floor(time / 24.0) : ceil(time / 24.0);
    0        
379           v_tm_tday = time;
380            
381 618 100       WRAP (v_tm_sec, v_tm_min, 60);
    0        
382 618 100       WRAP (v_tm_min, v_tm_hour, 60);
    0        
383 618 100       WRAP (v_tm_hour, v_tm_tday, 24);
    0        
384            
385 618         v_tm_wday = (int)fmod((v_tm_tday + 4.0), 7.0);
386 618 100       if (v_tm_wday < 0)
    0        
387 38         v_tm_wday += 7;
388           m = v_tm_tday;
389            
390 618 100       if (m >= CHEAT_DAYS) {
    0        
391           year = CHEAT_YEARS;
392 438         m -= CHEAT_DAYS;
393           }
394            
395 618 100       if (m >= 0) {
    0        
396           /* Gregorian cycles, this is huge optimization for distant times */
397 558         cycles = (int)floor(m / (Time64_T) days_in_gregorian_cycle);
398 558 100       if( cycles ) {
    0        
399 20         m -= (cycles * (Time64_T) days_in_gregorian_cycle);
400 20         year += (cycles * years_in_gregorian_cycle);
401           }
402            
403           /* Years */
404 558 50       leap = IS_LEAP (year);
    100        
    50        
    0        
    0        
    0        
405 10646 100       while (m >= (Time64_T) length_of_year[leap]) {
    0        
406 10088         m -= (Time64_T) length_of_year[leap];
407 10088         year++;
408 10088 100       leap = IS_LEAP (year);
    100        
    100        
    0        
    0        
    0        
409           }
410            
411           /* Months */
412           v_tm_mon = 0;
413 3994 100       while (m >= (Time64_T) days_in_month[leap][v_tm_mon]) {
    0        
414 3436         m -= (Time64_T) days_in_month[leap][v_tm_mon];
415 3436         v_tm_mon++;
416           }
417           } else {
418 60         year--;
419            
420           /* Gregorian cycles */
421 60         cycles = (int)ceil((m / (Time64_T) days_in_gregorian_cycle) + 1);
422 60 50       if( cycles ) {
    0        
423 60         m -= (cycles * (Time64_T) days_in_gregorian_cycle);
424 60         year += (cycles * years_in_gregorian_cycle);
425           }
426            
427           /* Years */
428 60 50       leap = IS_LEAP (year);
    0        
429 36306 100       while (m < (Time64_T) -length_of_year[leap]) {
    0        
430 36246         m += (Time64_T) length_of_year[leap];
431 36246         year--;
432 36246 100       leap = IS_LEAP (year);
    100        
    100        
    0        
    0        
    0        
433           }
434            
435           /* Months */
436           v_tm_mon = 11;
437 348 100       while (m < (Time64_T) -days_in_month[leap][v_tm_mon]) {
    0        
438 288         m += (Time64_T) days_in_month[leap][v_tm_mon];
439 288         v_tm_mon--;
440           }
441 60         m += (Time64_T) days_in_month[leap][v_tm_mon];
442           }
443            
444 618         p->tm_year = year;
445 618 50       if( p->tm_year != year ) {
    0        
446           #ifdef EOVERFLOW
447 0         errno = EOVERFLOW;
448           #endif
449 0         return NULL;
450           }
451            
452           /* At this point m is less than a year so casting to an int is safe */
453 618         p->tm_mday = (int) m + 1;
454 618         p->tm_yday = julian_days_by_month[leap][v_tm_mon] + (int)m;
455 618         p->tm_sec = v_tm_sec;
456 618         p->tm_min = v_tm_min;
457 618         p->tm_hour = v_tm_hour;
458 618         p->tm_mon = v_tm_mon;
459 618         p->tm_wday = v_tm_wday;
460            
461           assert(S_check_tm(p));
462            
463 0         return p;
464           }
465            
466            
467 2364         static struct TM *S_localtime64_r (const Time64_T *time, struct TM *local_tm)
468           {
469           time_t safe_time;
470           struct tm safe_date;
471           struct TM gm_tm;
472           Year orig_year;
473           int month_diff;
474            
475           assert(local_tm != NULL);
476            
477           /* Use the system localtime() if time_t is small enough */
478 2364 50       if( SHOULD_USE_SYSTEM_LOCALTIME(*time) ) {
    100        
    0        
    0        
479 2350         safe_time = (time_t)*time;
480            
481           TIME64_TRACE1("Using system localtime for %lld\n", *time);
482            
483 2350         LOCALTIME_R(&safe_time, &safe_date);
484            
485           S_copy_little_tm_to_big_TM(&safe_date, local_tm);
486           assert(S_check_tm(local_tm));
487            
488 0         return local_tm;
489           }
490            
491 14 50       if( S_gmtime64_r(time, &gm_tm) == NULL ) {
    0        
492           TIME64_TRACE1("gmtime64_r returned null for %lld\n", *time);
493           return NULL;
494           }
495            
496 14         orig_year = gm_tm.tm_year;
497            
498 14 50       if (gm_tm.tm_year > (2037 - 1900) ||
    0        
499           gm_tm.tm_year < (1970 - 1900)
500           )
501           {
502           TIME64_TRACE1("Mapping tm_year %lld to safe_year\n", (Year)gm_tm.tm_year);
503 21         gm_tm.tm_year = S_safe_year((Year)(gm_tm.tm_year + 1900)) - 1900;
504           }
505            
506 14         safe_time = (time_t)S_timegm64(&gm_tm);
507 14 50       if( LOCALTIME_R(&safe_time, &safe_date) == NULL ) {
    0        
508           TIME64_TRACE1("localtime_r(%d) returned NULL\n", (int)safe_time);
509           return NULL;
510           }
511            
512           S_copy_little_tm_to_big_TM(&safe_date, local_tm);
513            
514 14         local_tm->tm_year = orig_year;
515 14 50       if( local_tm->tm_year != orig_year ) {
    0        
516           TIME64_TRACE2("tm_year overflow: tm_year %lld, orig_year %lld\n",
517           (Year)local_tm->tm_year, (Year)orig_year);
518            
519           #ifdef EOVERFLOW
520 0         errno = EOVERFLOW;
521           #endif
522 0         return NULL;
523           }
524            
525            
526 14         month_diff = local_tm->tm_mon - gm_tm.tm_mon;
527            
528           /* When localtime is Dec 31st previous year and
529           gmtime is Jan 1st next year.
530           */
531 14 50       if( month_diff == 11 ) {
    0        
532 0         local_tm->tm_year--;
533           }
534            
535           /* When localtime is Jan 1st, next year and
536           gmtime is Dec 31st, previous year.
537           */
538 14 50       if( month_diff == -11 ) {
    0        
539 0         local_tm->tm_year++;
540           }
541            
542           /* GMT is Jan 1st, xx01 year, but localtime is still Dec 31st
543           in a non-leap xx00. There is one point in the cycle
544           we can't account for which the safe xx00 year is a leap
545           year. So we need to correct for Dec 31st coming out as
546           the 366th day of the year.
547           */
548 14 50       if( !IS_LEAP(local_tm->tm_year) && local_tm->tm_yday == 365 )
    50        
    0        
    50        
    50        
    0        
    0        
    0        
    0        
    0        
549 1182         local_tm->tm_yday--;
550            
551           assert(S_check_tm(local_tm));
552            
553           return local_tm;
554           }