line |
stmt |
bran |
cond |
sub |
time |
code |
1
|
|
|
|
|
|
/* |
2
|
|
|
|
|
|
|
3
|
|
|
|
|
|
Copyright (c) 2007-2008 Michael G Schwern |
4
|
|
|
|
|
|
|
5
|
|
|
|
|
|
This software originally derived from Paul Sheer's pivotal_gmtime_r.c. |
6
|
|
|
|
|
|
|
7
|
|
|
|
|
|
The MIT License: |
8
|
|
|
|
|
|
|
9
|
|
|
|
|
|
Permission is hereby granted, free of charge, to any person obtaining a copy |
10
|
|
|
|
|
|
of this software and associated documentation files (the "Software"), to deal |
11
|
|
|
|
|
|
in the Software without restriction, including without limitation the rights |
12
|
|
|
|
|
|
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell |
13
|
|
|
|
|
|
copies of the Software, and to permit persons to whom the Software is |
14
|
|
|
|
|
|
furnished to do so, subject to the following conditions: |
15
|
|
|
|
|
|
|
16
|
|
|
|
|
|
The above copyright notice and this permission notice shall be included in |
17
|
|
|
|
|
|
all copies or substantial portions of the Software. |
18
|
|
|
|
|
|
|
19
|
|
|
|
|
|
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR |
20
|
|
|
|
|
|
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, |
21
|
|
|
|
|
|
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE |
22
|
|
|
|
|
|
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER |
23
|
|
|
|
|
|
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, |
24
|
|
|
|
|
|
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN |
25
|
|
|
|
|
|
THE SOFTWARE. |
26
|
|
|
|
|
|
|
27
|
|
|
|
|
|
*/ |
28
|
|
|
|
|
|
|
29
|
|
|
|
|
|
/* |
30
|
|
|
|
|
|
|
31
|
|
|
|
|
|
Programmers who have available to them 64-bit time values as a 'long |
32
|
|
|
|
|
|
long' type can use localtime64_r() and gmtime64_r() which correctly |
33
|
|
|
|
|
|
converts the time even on 32-bit systems. Whether you have 64-bit time |
34
|
|
|
|
|
|
values will depend on the operating system. |
35
|
|
|
|
|
|
|
36
|
|
|
|
|
|
S_localtime64_r() is a 64-bit equivalent of localtime_r(). |
37
|
|
|
|
|
|
|
38
|
|
|
|
|
|
S_gmtime64_r() is a 64-bit equivalent of gmtime_r(). |
39
|
|
|
|
|
|
|
40
|
|
|
|
|
|
*/ |
41
|
|
|
|
|
|
|
42
|
|
|
|
|
|
#include "time64.h" |
43
|
|
|
|
|
|
|
44
|
|
|
|
|
|
static const int days_in_month[2][12] = { |
45
|
|
|
|
|
|
{31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31}, |
46
|
|
|
|
|
|
{31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31}, |
47
|
|
|
|
|
|
}; |
48
|
|
|
|
|
|
|
49
|
|
|
|
|
|
static const int julian_days_by_month[2][12] = { |
50
|
|
|
|
|
|
{0, 31, 59, 90, 120, 151, 181, 212, 243, 273, 304, 334}, |
51
|
|
|
|
|
|
{0, 31, 60, 91, 121, 152, 182, 213, 244, 274, 305, 335}, |
52
|
|
|
|
|
|
}; |
53
|
|
|
|
|
|
|
54
|
|
|
|
|
|
static const int length_of_year[2] = { 365, 366 }; |
55
|
|
|
|
|
|
|
56
|
|
|
|
|
|
/* Number of days in a 400 year Gregorian cycle */ |
57
|
|
|
|
|
|
static const Year years_in_gregorian_cycle = 400; |
58
|
|
|
|
|
|
static const int days_in_gregorian_cycle = (365 * 400) + 100 - 4 + 1; |
59
|
|
|
|
|
|
|
60
|
|
|
|
|
|
/* 28 year calendar cycle between 2010 and 2037 */ |
61
|
|
|
|
|
|
#define SOLAR_CYCLE_LENGTH 28 |
62
|
|
|
|
|
|
static const int safe_years[SOLAR_CYCLE_LENGTH] = { |
63
|
|
|
|
|
|
2016, 2017, 2018, 2019, |
64
|
|
|
|
|
|
2020, 2021, 2022, 2023, |
65
|
|
|
|
|
|
2024, 2025, 2026, 2027, |
66
|
|
|
|
|
|
2028, 2029, 2030, 2031, |
67
|
|
|
|
|
|
2032, 2033, 2034, 2035, |
68
|
|
|
|
|
|
2036, 2037, 2010, 2011, |
69
|
|
|
|
|
|
2012, 2013, 2014, 2015 |
70
|
|
|
|
|
|
}; |
71
|
|
|
|
|
|
|
72
|
|
|
|
|
|
static const int dow_year_start[SOLAR_CYCLE_LENGTH] = { |
73
|
|
|
|
|
|
5, 0, 1, 2, /* 0 2016 - 2019 */ |
74
|
|
|
|
|
|
3, 5, 6, 0, /* 4 */ |
75
|
|
|
|
|
|
1, 3, 4, 5, /* 8 */ |
76
|
|
|
|
|
|
6, 1, 2, 3, /* 12 */ |
77
|
|
|
|
|
|
4, 6, 0, 1, /* 16 */ |
78
|
|
|
|
|
|
2, 4, 5, 6, /* 20 2036, 2037, 2010, 2011 */ |
79
|
|
|
|
|
|
0, 2, 3, 4 /* 24 2012, 2013, 2014, 2015 */ |
80
|
|
|
|
|
|
}; |
81
|
|
|
|
|
|
|
82
|
|
|
|
|
|
/* Let's assume people are going to be looking for dates in the future. |
83
|
|
|
|
|
|
Let's provide some cheats so you can skip ahead. |
84
|
|
|
|
|
|
This has a 4x speed boost when near 2008. |
85
|
|
|
|
|
|
*/ |
86
|
|
|
|
|
|
/* Number of days since epoch on Jan 1st, 2008 GMT */ |
87
|
|
|
|
|
|
#define CHEAT_DAYS (1199145600 / 24 / 60 / 60) |
88
|
|
|
|
|
|
#define CHEAT_YEARS 108 |
89
|
|
|
|
|
|
|
90
|
|
|
|
|
|
#define IS_LEAP(n) ((!(((n) + 1900) % 400) || (!(((n) + 1900) % 4) && (((n) + 1900) % 100))) != 0) |
91
|
|
|
|
|
|
#define WRAP(a,b,m) ((a) = ((a) < 0 ) ? ((b)--, (a) + (m)) : (a)) |
92
|
|
|
|
|
|
|
93
|
|
|
|
|
|
#ifdef USE_SYSTEM_LOCALTIME |
94
|
|
|
|
|
|
# define SHOULD_USE_SYSTEM_LOCALTIME(a) ( \ |
95
|
|
|
|
|
|
(a) <= SYSTEM_LOCALTIME_MAX && \ |
96
|
|
|
|
|
|
(a) >= SYSTEM_LOCALTIME_MIN \ |
97
|
|
|
|
|
|
) |
98
|
|
|
|
|
|
#else |
99
|
|
|
|
|
|
# define SHOULD_USE_SYSTEM_LOCALTIME(a) (0) |
100
|
|
|
|
|
|
#endif |
101
|
|
|
|
|
|
|
102
|
|
|
|
|
|
#ifdef USE_SYSTEM_GMTIME |
103
|
|
|
|
|
|
# define SHOULD_USE_SYSTEM_GMTIME(a) ( \ |
104
|
|
|
|
|
|
(a) <= SYSTEM_GMTIME_MAX && \ |
105
|
|
|
|
|
|
(a) >= SYSTEM_GMTIME_MIN \ |
106
|
|
|
|
|
|
) |
107
|
|
|
|
|
|
#else |
108
|
|
|
|
|
|
# define SHOULD_USE_SYSTEM_GMTIME(a) (0) |
109
|
|
|
|
|
|
#endif |
110
|
|
|
|
|
|
|
111
|
|
|
|
|
|
/* Multi varadic macros are a C99 thing, alas */ |
112
|
|
|
|
|
|
#ifdef TIME_64_DEBUG |
113
|
|
|
|
|
|
# define TIME64_TRACE(format) (fprintf(stderr, format)) |
114
|
|
|
|
|
|
# define TIME64_TRACE1(format, var1) (fprintf(stderr, format, var1)) |
115
|
|
|
|
|
|
# define TIME64_TRACE2(format, var1, var2) (fprintf(stderr, format, var1, var2)) |
116
|
|
|
|
|
|
# define TIME64_TRACE3(format, var1, var2, var3) (fprintf(stderr, format, var1, var2, var3)) |
117
|
|
|
|
|
|
#else |
118
|
|
|
|
|
|
# define TIME64_TRACE(format) ((void)0) |
119
|
|
|
|
|
|
# define TIME64_TRACE1(format, var1) ((void)0) |
120
|
|
|
|
|
|
# define TIME64_TRACE2(format, var1, var2) ((void)0) |
121
|
|
|
|
|
|
# define TIME64_TRACE3(format, var1, var2, var3) ((void)0) |
122
|
|
|
|
|
|
#endif |
123
|
|
|
|
|
|
|
124
|
|
|
|
|
|
static int S_is_exception_century(Year year) |
125
|
|
|
|
|
|
{ |
126
|
28
|
50
|
|
|
|
int is_exception = ((year % 100 == 0) && !(year % 400 == 0)); |
|
|
0
|
|
|
|
|
|
|
50
|
|
|
|
|
|
|
0
|
|
|
|
|
|
|
0
|
|
|
|
|
|
|
0
|
|
|
|
|
|
|
0
|
|
|
|
|
|
|
0
|
|
|
|
|
127
|
|
|
|
|
|
TIME64_TRACE1("# is_exception_century: %s\n", is_exception ? "yes" : "no"); |
128
|
|
|
|
|
|
|
129
|
|
|
|
|
|
return(is_exception); |
130
|
|
|
|
|
|
} |
131
|
|
|
|
|
|
|
132
|
|
|
|
|
|
|
133
|
14
|
|
|
|
|
static Time64_T S_timegm64(struct TM *date) { |
134
|
|
|
|
|
|
int days = 0; |
135
|
|
|
|
|
|
Time64_T seconds = 0; |
136
|
|
|
|
|
|
Year year; |
137
|
|
|
|
|
|
|
138
|
14
|
50
|
|
|
|
if( date->tm_year > 70 ) { |
139
|
|
|
|
|
|
year = 70; |
140
|
688
|
100
|
|
|
|
while( year < date->tm_year ) { |
141
|
674
|
100
|
|
|
|
days += length_of_year[IS_LEAP(year)]; |
|
|
100
|
|
|
|
|
|
|
50
|
|
|
|
|
142
|
674
|
|
|
|
|
year++; |
143
|
|
|
|
|
|
} |
144
|
|
|
|
|
|
} |
145
|
0
|
0
|
|
|
|
else if ( date->tm_year < 70 ) { |
146
|
|
|
|
|
|
year = 69; |
147
|
|
|
|
|
|
do { |
148
|
0
|
0
|
|
|
|
days -= length_of_year[IS_LEAP(year)]; |
|
|
0
|
|
|
|
|
|
|
0
|
|
|
|
|
149
|
0
|
|
|
|
|
year--; |
150
|
0
|
0
|
|
|
|
} while( year >= date->tm_year ); |
151
|
|
|
|
|
|
} |
152
|
|
|
|
|
|
|
153
|
14
|
50
|
|
|
|
days += julian_days_by_month[IS_LEAP(date->tm_year)][date->tm_mon]; |
|
|
50
|
|
|
|
|
|
|
0
|
|
|
|
|
154
|
14
|
|
|
|
|
days += date->tm_mday - 1; |
155
|
|
|
|
|
|
|
156
|
|
|
|
|
|
/* Avoid overflowing the days integer */ |
157
|
14
|
|
|
|
|
seconds = days; |
158
|
14
|
|
|
|
|
seconds = seconds * 60 * 60 * 24; |
159
|
|
|
|
|
|
|
160
|
14
|
|
|
|
|
seconds += date->tm_hour * 60 * 60; |
161
|
14
|
|
|
|
|
seconds += date->tm_min * 60; |
162
|
14
|
|
|
|
|
seconds += date->tm_sec; |
163
|
|
|
|
|
|
|
164
|
14
|
|
|
|
|
return(seconds); |
165
|
|
|
|
|
|
} |
166
|
|
|
|
|
|
|
167
|
|
|
|
|
|
|
168
|
|
|
|
|
|
#ifdef DEBUGGING |
169
|
|
|
|
|
|
static int S_check_tm(struct TM *tm) |
170
|
|
|
|
|
|
{ |
171
|
|
|
|
|
|
/* Don't forget leap seconds */ |
172
|
|
|
|
|
|
assert(tm->tm_sec >= 0); |
173
|
|
|
|
|
|
assert(tm->tm_sec <= 61); |
174
|
|
|
|
|
|
|
175
|
|
|
|
|
|
assert(tm->tm_min >= 0); |
176
|
|
|
|
|
|
assert(tm->tm_min <= 59); |
177
|
|
|
|
|
|
|
178
|
|
|
|
|
|
assert(tm->tm_hour >= 0); |
179
|
|
|
|
|
|
assert(tm->tm_hour <= 23); |
180
|
|
|
|
|
|
|
181
|
|
|
|
|
|
assert(tm->tm_mday >= 1); |
182
|
|
|
|
|
|
assert(tm->tm_mday <= days_in_month[IS_LEAP(tm->tm_year)][tm->tm_mon]); |
183
|
|
|
|
|
|
|
184
|
|
|
|
|
|
assert(tm->tm_mon >= 0); |
185
|
|
|
|
|
|
assert(tm->tm_mon <= 11); |
186
|
|
|
|
|
|
|
187
|
|
|
|
|
|
assert(tm->tm_wday >= 0); |
188
|
|
|
|
|
|
assert(tm->tm_wday <= 6); |
189
|
|
|
|
|
|
|
190
|
|
|
|
|
|
assert(tm->tm_yday >= 0); |
191
|
|
|
|
|
|
assert(tm->tm_yday <= length_of_year[IS_LEAP(tm->tm_year)]); |
192
|
|
|
|
|
|
|
193
|
|
|
|
|
|
#ifdef HAS_TM_TM_GMTOFF |
194
|
|
|
|
|
|
assert(tm->tm_gmtoff >= -24 * 60 * 60); |
195
|
|
|
|
|
|
assert(tm->tm_gmtoff <= 24 * 60 * 60); |
196
|
|
|
|
|
|
#endif |
197
|
|
|
|
|
|
|
198
|
|
|
|
|
|
return 1; |
199
|
|
|
|
|
|
} |
200
|
|
|
|
|
|
#endif |
201
|
|
|
|
|
|
|
202
|
|
|
|
|
|
|
203
|
|
|
|
|
|
/* The exceptional centuries without leap years cause the cycle to |
204
|
|
|
|
|
|
shift by 16 |
205
|
|
|
|
|
|
*/ |
206
|
|
|
|
|
|
static Year S_cycle_offset(Year year) |
207
|
|
|
|
|
|
{ |
208
|
|
|
|
|
|
const Year start_year = 2000; |
209
|
14
|
|
|
|
|
Year year_diff = year - start_year; |
210
|
|
|
|
|
|
Year exceptions; |
211
|
|
|
|
|
|
|
212
|
14
|
50
|
|
|
|
if( year > start_year ) |
|
|
0
|
|
|
|
|
213
|
0
|
|
|
|
|
year_diff--; |
214
|
|
|
|
|
|
|
215
|
14
|
|
|
|
|
exceptions = year_diff / 100; |
216
|
14
|
|
|
|
|
exceptions -= year_diff / 400; |
217
|
|
|
|
|
|
|
218
|
|
|
|
|
|
TIME64_TRACE3("# year: %lld, exceptions: %lld, year_diff: %lld\n", |
219
|
|
|
|
|
|
year, exceptions, year_diff); |
220
|
|
|
|
|
|
|
221
|
14
|
|
|
|
|
return exceptions * 16; |
222
|
|
|
|
|
|
} |
223
|
|
|
|
|
|
|
224
|
|
|
|
|
|
/* For a given year after 2038, pick the latest possible matching |
225
|
|
|
|
|
|
year in the 28 year calendar cycle. |
226
|
|
|
|
|
|
|
227
|
|
|
|
|
|
A matching year... |
228
|
|
|
|
|
|
1) Starts on the same day of the week. |
229
|
|
|
|
|
|
2) Has the same leap year status. |
230
|
|
|
|
|
|
|
231
|
|
|
|
|
|
This is so the calendars match up. |
232
|
|
|
|
|
|
|
233
|
|
|
|
|
|
Also the previous year must match. When doing Jan 1st you might |
234
|
|
|
|
|
|
wind up on Dec 31st the previous year when doing a -UTC time zone. |
235
|
|
|
|
|
|
|
236
|
|
|
|
|
|
Finally, the next year must have the same start day of week. This |
237
|
|
|
|
|
|
is for Dec 31st with a +UTC time zone. |
238
|
|
|
|
|
|
It doesn't need the same leap year status since we only care about |
239
|
|
|
|
|
|
January 1st. |
240
|
|
|
|
|
|
*/ |
241
|
|
|
|
|
|
static int S_safe_year(Year year) |
242
|
|
|
|
|
|
{ |
243
|
|
|
|
|
|
int safe_year; |
244
|
14
|
|
|
|
|
Year year_cycle = year + S_cycle_offset(year); |
245
|
|
|
|
|
|
|
246
|
|
|
|
|
|
/* Change non-leap xx00 years to an equivalent */ |
247
|
14
|
50
|
|
|
|
if( S_is_exception_century(year) ) |
|
|
0
|
|
|
|
|
248
|
0
|
|
|
|
|
year_cycle += 11; |
249
|
|
|
|
|
|
|
250
|
|
|
|
|
|
/* Also xx01 years, since the previous year will be wrong */ |
251
|
21
|
50
|
|
|
|
if( S_is_exception_century(year - 1) ) |
|
|
0
|
|
|
|
|
252
|
0
|
|
|
|
|
year_cycle += 17; |
253
|
|
|
|
|
|
|
254
|
14
|
|
|
|
|
year_cycle %= SOLAR_CYCLE_LENGTH; |
255
|
14
|
50
|
|
|
|
if( year_cycle < 0 ) |
|
|
0
|
|
|
|
|
256
|
14
|
|
|
|
|
year_cycle = SOLAR_CYCLE_LENGTH + year_cycle; |
257
|
|
|
|
|
|
|
258
|
|
|
|
|
|
assert( year_cycle >= 0 ); |
259
|
|
|
|
|
|
assert( year_cycle < SOLAR_CYCLE_LENGTH ); |
260
|
14
|
|
|
|
|
safe_year = safe_years[year_cycle]; |
261
|
|
|
|
|
|
|
262
|
|
|
|
|
|
assert(safe_year <= 2037 && safe_year >= 2010); |
263
|
|
|
|
|
|
|
264
|
|
|
|
|
|
TIME64_TRACE3("# year: %lld, year_cycle: %lld, safe_year: %d\n", |
265
|
|
|
|
|
|
year, year_cycle, safe_year); |
266
|
|
|
|
|
|
|
267
|
|
|
|
|
|
return safe_year; |
268
|
|
|
|
|
|
} |
269
|
|
|
|
|
|
|
270
|
|
|
|
|
|
|
271
|
|
|
|
|
|
static void S_copy_little_tm_to_big_TM(const struct tm *src, struct TM *dest) { |
272
|
|
|
|
|
|
assert(src); |
273
|
|
|
|
|
|
assert(dest); |
274
|
|
|
|
|
|
#ifdef USE_TM64 |
275
|
2364
|
|
|
|
|
dest->tm_sec = src->tm_sec; |
276
|
2364
|
|
|
|
|
dest->tm_min = src->tm_min; |
277
|
2364
|
|
|
|
|
dest->tm_hour = src->tm_hour; |
278
|
2364
|
|
|
|
|
dest->tm_mday = src->tm_mday; |
279
|
2364
|
|
|
|
|
dest->tm_mon = src->tm_mon; |
280
|
2364
|
|
|
|
|
dest->tm_year = (Year)src->tm_year; |
281
|
2364
|
|
|
|
|
dest->tm_wday = src->tm_wday; |
282
|
2364
|
|
|
|
|
dest->tm_yday = src->tm_yday; |
283
|
2364
|
|
|
|
|
dest->tm_isdst = src->tm_isdst; |
284
|
|
|
|
|
|
|
285
|
|
|
|
|
|
# ifdef HAS_TM_TM_GMTOFF |
286
|
2364
|
|
|
|
|
dest->tm_gmtoff = src->tm_gmtoff; |
287
|
|
|
|
|
|
# endif |
288
|
|
|
|
|
|
|
289
|
|
|
|
|
|
# ifdef HAS_TM_TM_ZONE |
290
|
2357
|
|
|
|
|
dest->tm_zone = src->tm_zone; |
291
|
|
|
|
|
|
# endif |
292
|
|
|
|
|
|
|
293
|
|
|
|
|
|
#else |
294
|
|
|
|
|
|
/* They're the same type */ |
295
|
|
|
|
|
|
memcpy(dest, src, sizeof(*dest)); |
296
|
|
|
|
|
|
#endif |
297
|
|
|
|
|
|
} |
298
|
|
|
|
|
|
|
299
|
|
|
|
|
|
|
300
|
|
|
|
|
|
#ifndef HAS_LOCALTIME_R |
301
|
|
|
|
|
|
/* Simulate localtime_r() to the best of our ability */ |
302
|
2364
|
|
|
|
|
static struct tm * S_localtime_r(const time_t *clock, struct tm *result) { |
303
|
|
|
|
|
|
#ifdef VMS |
304
|
|
|
|
|
|
dTHX; /* in case the following is defined as Perl_my_localtime(aTHX_ ...) */ |
305
|
|
|
|
|
|
#endif |
306
|
2364
|
|
|
|
|
const struct tm *static_result = localtime(clock); |
307
|
|
|
|
|
|
|
308
|
|
|
|
|
|
assert(result != NULL); |
309
|
|
|
|
|
|
|
310
|
2364
|
50
|
|
|
|
if( static_result == NULL ) { |
311
|
|
|
|
|
|
memset(result, 0, sizeof(*result)); |
312
|
0
|
|
|
|
|
return NULL; |
313
|
|
|
|
|
|
} |
314
|
|
|
|
|
|
else { |
315
|
2364
|
|
|
|
|
memcpy(result, static_result, sizeof(*result)); |
316
|
2364
|
|
|
|
|
return result; |
317
|
|
|
|
|
|
} |
318
|
|
|
|
|
|
} |
319
|
|
|
|
|
|
#endif |
320
|
|
|
|
|
|
|
321
|
|
|
|
|
|
#ifndef HAS_GMTIME_R |
322
|
|
|
|
|
|
/* Simulate gmtime_r() to the best of our ability */ |
323
|
|
|
|
|
|
static struct tm * S_gmtime_r(const time_t *clock, struct tm *result) { |
324
|
|
|
|
|
|
dTHX; /* in case the following is defined as Perl_my_gmtime(aTHX_ ...) */ |
325
|
|
|
|
|
|
const struct tm *static_result = gmtime(clock); |
326
|
|
|
|
|
|
|
327
|
|
|
|
|
|
assert(result != NULL); |
328
|
|
|
|
|
|
|
329
|
|
|
|
|
|
if( static_result == NULL ) { |
330
|
|
|
|
|
|
memset(result, 0, sizeof(*result)); |
331
|
|
|
|
|
|
return NULL; |
332
|
|
|
|
|
|
} |
333
|
|
|
|
|
|
else { |
334
|
|
|
|
|
|
memcpy(result, static_result, sizeof(*result)); |
335
|
|
|
|
|
|
return result; |
336
|
|
|
|
|
|
} |
337
|
|
|
|
|
|
} |
338
|
|
|
|
|
|
#endif |
339
|
|
|
|
|
|
|
340
|
618
|
|
|
|
|
static struct TM *S_gmtime64_r (const Time64_T *in_time, struct TM *p) |
341
|
|
|
|
|
|
{ |
342
|
|
|
|
|
|
int v_tm_sec, v_tm_min, v_tm_hour, v_tm_mon, v_tm_wday; |
343
|
|
|
|
|
|
Time64_T v_tm_tday; |
344
|
|
|
|
|
|
int leap; |
345
|
|
|
|
|
|
Time64_T m; |
346
|
618
|
|
|
|
|
Time64_T time = *in_time; |
347
|
|
|
|
|
|
Year year = 70; |
348
|
|
|
|
|
|
int cycles = 0; |
349
|
|
|
|
|
|
|
350
|
|
|
|
|
|
assert(p != NULL); |
351
|
|
|
|
|
|
|
352
|
|
|
|
|
|
/* Use the system gmtime() if time_t is small enough */ |
353
|
|
|
|
|
|
if( SHOULD_USE_SYSTEM_GMTIME(*in_time) ) { |
354
|
|
|
|
|
|
time_t safe_time = (time_t)*in_time; |
355
|
|
|
|
|
|
struct tm safe_date; |
356
|
|
|
|
|
|
GMTIME_R(&safe_time, &safe_date); |
357
|
|
|
|
|
|
|
358
|
|
|
|
|
|
S_copy_little_tm_to_big_TM(&safe_date, p); |
359
|
|
|
|
|
|
assert(S_check_tm(p)); |
360
|
|
|
|
|
|
|
361
|
|
|
|
|
|
return p; |
362
|
|
|
|
|
|
} |
363
|
|
|
|
|
|
|
364
|
|
|
|
|
|
#ifdef HAS_TM_TM_GMTOFF |
365
|
618
|
|
|
|
|
p->tm_gmtoff = 0; |
366
|
|
|
|
|
|
#endif |
367
|
618
|
|
|
|
|
p->tm_isdst = 0; |
368
|
|
|
|
|
|
|
369
|
|
|
|
|
|
#ifdef HAS_TM_TM_ZONE |
370
|
618
|
|
|
|
|
p->tm_zone = (char *)"UTC"; |
371
|
|
|
|
|
|
#endif |
372
|
|
|
|
|
|
|
373
|
618
|
|
|
|
|
v_tm_sec = (int)fmod(time, 60.0); |
374
|
618
|
100
|
|
|
|
time = time >= 0 ? floor(time / 60.0) : ceil(time / 60.0); |
|
|
0
|
|
|
|
|
375
|
618
|
|
|
|
|
v_tm_min = (int)fmod(time, 60.0); |
376
|
618
|
100
|
|
|
|
time = time >= 0 ? floor(time / 60.0) : ceil(time / 60.0); |
|
|
0
|
|
|
|
|
377
|
618
|
|
|
|
|
v_tm_hour = (int)fmod(time, 24.0); |
378
|
618
|
100
|
|
|
|
time = time >= 0 ? floor(time / 24.0) : ceil(time / 24.0); |
|
|
0
|
|
|
|
|
379
|
|
|
|
|
|
v_tm_tday = time; |
380
|
|
|
|
|
|
|
381
|
618
|
100
|
|
|
|
WRAP (v_tm_sec, v_tm_min, 60); |
|
|
0
|
|
|
|
|
382
|
618
|
100
|
|
|
|
WRAP (v_tm_min, v_tm_hour, 60); |
|
|
0
|
|
|
|
|
383
|
618
|
100
|
|
|
|
WRAP (v_tm_hour, v_tm_tday, 24); |
|
|
0
|
|
|
|
|
384
|
|
|
|
|
|
|
385
|
618
|
|
|
|
|
v_tm_wday = (int)fmod((v_tm_tday + 4.0), 7.0); |
386
|
618
|
100
|
|
|
|
if (v_tm_wday < 0) |
|
|
0
|
|
|
|
|
387
|
38
|
|
|
|
|
v_tm_wday += 7; |
388
|
|
|
|
|
|
m = v_tm_tday; |
389
|
|
|
|
|
|
|
390
|
618
|
100
|
|
|
|
if (m >= CHEAT_DAYS) { |
|
|
0
|
|
|
|
|
391
|
|
|
|
|
|
year = CHEAT_YEARS; |
392
|
438
|
|
|
|
|
m -= CHEAT_DAYS; |
393
|
|
|
|
|
|
} |
394
|
|
|
|
|
|
|
395
|
618
|
100
|
|
|
|
if (m >= 0) { |
|
|
0
|
|
|
|
|
396
|
|
|
|
|
|
/* Gregorian cycles, this is huge optimization for distant times */ |
397
|
558
|
|
|
|
|
cycles = (int)floor(m / (Time64_T) days_in_gregorian_cycle); |
398
|
558
|
100
|
|
|
|
if( cycles ) { |
|
|
0
|
|
|
|
|
399
|
20
|
|
|
|
|
m -= (cycles * (Time64_T) days_in_gregorian_cycle); |
400
|
20
|
|
|
|
|
year += (cycles * years_in_gregorian_cycle); |
401
|
|
|
|
|
|
} |
402
|
|
|
|
|
|
|
403
|
|
|
|
|
|
/* Years */ |
404
|
558
|
50
|
|
|
|
leap = IS_LEAP (year); |
|
|
100
|
|
|
|
|
|
|
50
|
|
|
|
|
|
|
0
|
|
|
|
|
|
|
0
|
|
|
|
|
|
|
0
|
|
|
|
|
405
|
10646
|
100
|
|
|
|
while (m >= (Time64_T) length_of_year[leap]) { |
|
|
0
|
|
|
|
|
406
|
10088
|
|
|
|
|
m -= (Time64_T) length_of_year[leap]; |
407
|
10088
|
|
|
|
|
year++; |
408
|
10088
|
100
|
|
|
|
leap = IS_LEAP (year); |
|
|
100
|
|
|
|
|
|
|
100
|
|
|
|
|
|
|
0
|
|
|
|
|
|
|
0
|
|
|
|
|
|
|
0
|
|
|
|
|
409
|
|
|
|
|
|
} |
410
|
|
|
|
|
|
|
411
|
|
|
|
|
|
/* Months */ |
412
|
|
|
|
|
|
v_tm_mon = 0; |
413
|
3994
|
100
|
|
|
|
while (m >= (Time64_T) days_in_month[leap][v_tm_mon]) { |
|
|
0
|
|
|
|
|
414
|
3436
|
|
|
|
|
m -= (Time64_T) days_in_month[leap][v_tm_mon]; |
415
|
3436
|
|
|
|
|
v_tm_mon++; |
416
|
|
|
|
|
|
} |
417
|
|
|
|
|
|
} else { |
418
|
60
|
|
|
|
|
year--; |
419
|
|
|
|
|
|
|
420
|
|
|
|
|
|
/* Gregorian cycles */ |
421
|
60
|
|
|
|
|
cycles = (int)ceil((m / (Time64_T) days_in_gregorian_cycle) + 1); |
422
|
60
|
50
|
|
|
|
if( cycles ) { |
|
|
0
|
|
|
|
|
423
|
60
|
|
|
|
|
m -= (cycles * (Time64_T) days_in_gregorian_cycle); |
424
|
60
|
|
|
|
|
year += (cycles * years_in_gregorian_cycle); |
425
|
|
|
|
|
|
} |
426
|
|
|
|
|
|
|
427
|
|
|
|
|
|
/* Years */ |
428
|
60
|
50
|
|
|
|
leap = IS_LEAP (year); |
|
|
0
|
|
|
|
|
429
|
36306
|
100
|
|
|
|
while (m < (Time64_T) -length_of_year[leap]) { |
|
|
0
|
|
|
|
|
430
|
36246
|
|
|
|
|
m += (Time64_T) length_of_year[leap]; |
431
|
36246
|
|
|
|
|
year--; |
432
|
36246
|
100
|
|
|
|
leap = IS_LEAP (year); |
|
|
100
|
|
|
|
|
|
|
100
|
|
|
|
|
|
|
0
|
|
|
|
|
|
|
0
|
|
|
|
|
|
|
0
|
|
|
|
|
433
|
|
|
|
|
|
} |
434
|
|
|
|
|
|
|
435
|
|
|
|
|
|
/* Months */ |
436
|
|
|
|
|
|
v_tm_mon = 11; |
437
|
348
|
100
|
|
|
|
while (m < (Time64_T) -days_in_month[leap][v_tm_mon]) { |
|
|
0
|
|
|
|
|
438
|
288
|
|
|
|
|
m += (Time64_T) days_in_month[leap][v_tm_mon]; |
439
|
288
|
|
|
|
|
v_tm_mon--; |
440
|
|
|
|
|
|
} |
441
|
60
|
|
|
|
|
m += (Time64_T) days_in_month[leap][v_tm_mon]; |
442
|
|
|
|
|
|
} |
443
|
|
|
|
|
|
|
444
|
618
|
|
|
|
|
p->tm_year = year; |
445
|
618
|
50
|
|
|
|
if( p->tm_year != year ) { |
|
|
0
|
|
|
|
|
446
|
|
|
|
|
|
#ifdef EOVERFLOW |
447
|
0
|
|
|
|
|
errno = EOVERFLOW; |
448
|
|
|
|
|
|
#endif |
449
|
0
|
|
|
|
|
return NULL; |
450
|
|
|
|
|
|
} |
451
|
|
|
|
|
|
|
452
|
|
|
|
|
|
/* At this point m is less than a year so casting to an int is safe */ |
453
|
618
|
|
|
|
|
p->tm_mday = (int) m + 1; |
454
|
618
|
|
|
|
|
p->tm_yday = julian_days_by_month[leap][v_tm_mon] + (int)m; |
455
|
618
|
|
|
|
|
p->tm_sec = v_tm_sec; |
456
|
618
|
|
|
|
|
p->tm_min = v_tm_min; |
457
|
618
|
|
|
|
|
p->tm_hour = v_tm_hour; |
458
|
618
|
|
|
|
|
p->tm_mon = v_tm_mon; |
459
|
618
|
|
|
|
|
p->tm_wday = v_tm_wday; |
460
|
|
|
|
|
|
|
461
|
|
|
|
|
|
assert(S_check_tm(p)); |
462
|
|
|
|
|
|
|
463
|
0
|
|
|
|
|
return p; |
464
|
|
|
|
|
|
} |
465
|
|
|
|
|
|
|
466
|
|
|
|
|
|
|
467
|
2364
|
|
|
|
|
static struct TM *S_localtime64_r (const Time64_T *time, struct TM *local_tm) |
468
|
|
|
|
|
|
{ |
469
|
|
|
|
|
|
time_t safe_time; |
470
|
|
|
|
|
|
struct tm safe_date; |
471
|
|
|
|
|
|
struct TM gm_tm; |
472
|
|
|
|
|
|
Year orig_year; |
473
|
|
|
|
|
|
int month_diff; |
474
|
|
|
|
|
|
|
475
|
|
|
|
|
|
assert(local_tm != NULL); |
476
|
|
|
|
|
|
|
477
|
|
|
|
|
|
/* Use the system localtime() if time_t is small enough */ |
478
|
2364
|
50
|
|
|
|
if( SHOULD_USE_SYSTEM_LOCALTIME(*time) ) { |
|
|
100
|
|
|
|
|
|
|
0
|
|
|
|
|
|
|
0
|
|
|
|
|
479
|
2350
|
|
|
|
|
safe_time = (time_t)*time; |
480
|
|
|
|
|
|
|
481
|
|
|
|
|
|
TIME64_TRACE1("Using system localtime for %lld\n", *time); |
482
|
|
|
|
|
|
|
483
|
2350
|
|
|
|
|
LOCALTIME_R(&safe_time, &safe_date); |
484
|
|
|
|
|
|
|
485
|
|
|
|
|
|
S_copy_little_tm_to_big_TM(&safe_date, local_tm); |
486
|
|
|
|
|
|
assert(S_check_tm(local_tm)); |
487
|
|
|
|
|
|
|
488
|
0
|
|
|
|
|
return local_tm; |
489
|
|
|
|
|
|
} |
490
|
|
|
|
|
|
|
491
|
14
|
50
|
|
|
|
if( S_gmtime64_r(time, &gm_tm) == NULL ) { |
|
|
0
|
|
|
|
|
492
|
|
|
|
|
|
TIME64_TRACE1("gmtime64_r returned null for %lld\n", *time); |
493
|
|
|
|
|
|
return NULL; |
494
|
|
|
|
|
|
} |
495
|
|
|
|
|
|
|
496
|
14
|
|
|
|
|
orig_year = gm_tm.tm_year; |
497
|
|
|
|
|
|
|
498
|
14
|
50
|
|
|
|
if (gm_tm.tm_year > (2037 - 1900) || |
|
|
0
|
|
|
|
|
499
|
|
|
|
|
|
gm_tm.tm_year < (1970 - 1900) |
500
|
|
|
|
|
|
) |
501
|
|
|
|
|
|
{ |
502
|
|
|
|
|
|
TIME64_TRACE1("Mapping tm_year %lld to safe_year\n", (Year)gm_tm.tm_year); |
503
|
21
|
|
|
|
|
gm_tm.tm_year = S_safe_year((Year)(gm_tm.tm_year + 1900)) - 1900; |
504
|
|
|
|
|
|
} |
505
|
|
|
|
|
|
|
506
|
14
|
|
|
|
|
safe_time = (time_t)S_timegm64(&gm_tm); |
507
|
14
|
50
|
|
|
|
if( LOCALTIME_R(&safe_time, &safe_date) == NULL ) { |
|
|
0
|
|
|
|
|
508
|
|
|
|
|
|
TIME64_TRACE1("localtime_r(%d) returned NULL\n", (int)safe_time); |
509
|
|
|
|
|
|
return NULL; |
510
|
|
|
|
|
|
} |
511
|
|
|
|
|
|
|
512
|
|
|
|
|
|
S_copy_little_tm_to_big_TM(&safe_date, local_tm); |
513
|
|
|
|
|
|
|
514
|
14
|
|
|
|
|
local_tm->tm_year = orig_year; |
515
|
14
|
50
|
|
|
|
if( local_tm->tm_year != orig_year ) { |
|
|
0
|
|
|
|
|
516
|
|
|
|
|
|
TIME64_TRACE2("tm_year overflow: tm_year %lld, orig_year %lld\n", |
517
|
|
|
|
|
|
(Year)local_tm->tm_year, (Year)orig_year); |
518
|
|
|
|
|
|
|
519
|
|
|
|
|
|
#ifdef EOVERFLOW |
520
|
0
|
|
|
|
|
errno = EOVERFLOW; |
521
|
|
|
|
|
|
#endif |
522
|
0
|
|
|
|
|
return NULL; |
523
|
|
|
|
|
|
} |
524
|
|
|
|
|
|
|
525
|
|
|
|
|
|
|
526
|
14
|
|
|
|
|
month_diff = local_tm->tm_mon - gm_tm.tm_mon; |
527
|
|
|
|
|
|
|
528
|
|
|
|
|
|
/* When localtime is Dec 31st previous year and |
529
|
|
|
|
|
|
gmtime is Jan 1st next year. |
530
|
|
|
|
|
|
*/ |
531
|
14
|
50
|
|
|
|
if( month_diff == 11 ) { |
|
|
0
|
|
|
|
|
532
|
0
|
|
|
|
|
local_tm->tm_year--; |
533
|
|
|
|
|
|
} |
534
|
|
|
|
|
|
|
535
|
|
|
|
|
|
/* When localtime is Jan 1st, next year and |
536
|
|
|
|
|
|
gmtime is Dec 31st, previous year. |
537
|
|
|
|
|
|
*/ |
538
|
14
|
50
|
|
|
|
if( month_diff == -11 ) { |
|
|
0
|
|
|
|
|
539
|
0
|
|
|
|
|
local_tm->tm_year++; |
540
|
|
|
|
|
|
} |
541
|
|
|
|
|
|
|
542
|
|
|
|
|
|
/* GMT is Jan 1st, xx01 year, but localtime is still Dec 31st |
543
|
|
|
|
|
|
in a non-leap xx00. There is one point in the cycle |
544
|
|
|
|
|
|
we can't account for which the safe xx00 year is a leap |
545
|
|
|
|
|
|
year. So we need to correct for Dec 31st coming out as |
546
|
|
|
|
|
|
the 366th day of the year. |
547
|
|
|
|
|
|
*/ |
548
|
14
|
50
|
|
|
|
if( !IS_LEAP(local_tm->tm_year) && local_tm->tm_yday == 365 ) |
|
|
50
|
|
|
|
|
|
|
0
|
|
|
|
|
|
|
50
|
|
|
|
|
|
|
50
|
|
|
|
|
|
|
0
|
|
|
|
|
|
|
0
|
|
|
|
|
|
|
0
|
|
|
|
|
|
|
0
|
|
|
|
|
|
|
0
|
|
|
|
|
549
|
1182
|
|
|
|
|
local_tm->tm_yday--; |
550
|
|
|
|
|
|
|
551
|
|
|
|
|
|
assert(S_check_tm(local_tm)); |
552
|
|
|
|
|
|
|
553
|
|
|
|
|
|
return local_tm; |
554
|
|
|
|
|
|
} |